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Exploring the Geometry of One-Dimensional Signals
Ruiming Guo and Thierry Blu , Fellow, IEEE

Abstract—The wide availability of inexpensive sensors of all
kinds (inertia, magnetic field, light, temperature, pressure, chemi-
cals etc.) makes it possible to empower a host of novel applications.
We have shown in a previous paper that, if the field sensed can
be expressed as a finite sum of 2D sinusoids, it is possible to
reconstruct the sampling curve from the 1D sequence of image
samples alone (up to a linear transformation)—without extra po-
sitioning information. Here, we explore the validity of this result
if, instead, we assume the image to be directional or, as an extreme
case, laminar and we simplify our previous approach to the single
sinusoid fitting of segments of the 1D samples. We obtain predictive
results that quantify the accuracy with which the frequencies found
can be used to estimate the slope of the sampling trajectory. We
also develop a robust algorithm to retrieve the sampling trajectory
and estimate the laminar image that underlies the 1D samples. We
finally demonstrate the validity of our approach on synthetic and
well-chosen real images.

Index Terms—Mobile sensing, frequency estimation, data
visualization, sampling theory, curve estimation.

I. INTRODUCTION

S ENSOR LOCALIZATION: With the advent of ubiquitous
sensors, supporting mobility of various sensors has become

an important topic in many researches. Localizing mobile sen-
sors traversing through a physical field is a fundamental problem
in this area. Accurate estimates of mobile sensor trajectories
enable more efficient sensing strategies and more convenient
services in various scenarios [1]. Location-dependent tasks,
with application examples ranging from logistic tracking to
reef monitoring or robot navigation, first and foremost require
reliable positioning techniques [2].

If each mobile sensor could always equip a GPS (Global Posi-
tioning System) device, this problem would be straightforward
because most of the GPS samples would usually be accurate
enough to within a few meters. For applications that require
positions to be monitored continuously, however, the GPS has
practical limitations. First, GPS chips installed on today’s mobile
devices consume a substantial amount of energy, leading to
a significant constraint in battery life [3], e.g. patch sensor
mounted on insects (often limited to a small size). Second, in
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many outdoor tracking/monitoring applications, objects often
do not have a clear line-of-sight to GPS satellites [4], e.g.
systems that track express delivery [5] and systems for seabed
detection [6].

In order to address this issue, mobile device localization
has been a subject of research studies for decades. Among
the solutions investigated, triangulation methods [7], [8] are
the most common. Basically, these techniques estimate mo-
bile sensor positions based on a number of distance or angle
measurements to beacon/anchor nodes. However, these methods
require relatively accurate models that describe how electro-
magnetic signals propagate in space, and dense deployment of
beacon/anchor nodes, which are unable to adapt to various real
environments. Due to these limitations, people further developed
trajectory mapping/matching to produce the most likely trajec-
tory traversed by the mobile device [9], [1], [10]. In general,
these methods need to pre-compute the signal-strength map or
learn a signal-position mapping of the coverage area. Then,
positions of the mobile device can be estimated by comparing
the signal signature/fingerprints with the learned measurement
map. However, the prior knowledge of the 2D physical field
is usually unavailable in many situations, e.g. applications
of SLAM (simultaneous localization and mapping) including
planet exploration [11] and augmented reality [12].

Our contribution: In previous papers, we were able to demon-
strate that the time samples acquired by a non-positioning sensor
(e.g., temperature, pressure, magnetic, etc.) that moves within
a plane, contain significant geometric information about the
trajectory of the sensor [13], [14]. More precisely, if the field
sensed by the sensor is approximated well by a small sum of
2D sinusoids (and if the trajectory does not change too fast) we
proved that it is possible to reconstruct its trajectory (up to an
affine transformation) from the 1D samples of that field along
that very trajectory—and even the 2D field itsef.

Of course, what makes this result so unexpected is that no
positioning system is used at all: it is only the spatial correlation
of the field, or its manifestation through the samples along the
sensor trajectory that makes this reconstruction possible. Even
more surprising, the robust reconstruction algorithm that we
have devised has been exceeding our expectations significantly:
even when the field sensed (typically, a natural image taken
with a megapixel camera) is violating the hypotheses that make
our proof stand, yet a quite reasonable trajectory is retrieved
(see [14, Fig. 13]). Suspecting that this possibility results from
the directionality of the images considered, we replaced the
sinusoidal assumption by an ideal directional assumption: the
laminar image assumption (see Fig. 1). The current paper reports
on our findings.
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Fig. 1. Examples of Laminar Images. (a) Varying fast along u (red vector)
and keeping constant along ũ. (b) Soil geological stratification. (c) Muscle tissue
section.

Roughly speaking, the reason why we can connect 2D geom-
etry with 1D samples is because sampling a 2D sinusoid along a
straight line results in a 1D sinusoid whose frequency depends
on the slope of the line. We found that, if the image is made of at
least three sinusoids, the slope of the trajectory can be retrieved
by finding the “projected” frequencies onto the 1D samples (up
to an arbitrary affine transformation). Of course, our method
relies on a very accurate high-resolution frequency estimation
algorithm described originally in [15].

In contrast with that method, the current paper proposes to
estimate only one sinusoid from the 1D samples: in fact, we fit
the samples with a complex exponential, in practice, maximizing
the discrete-time Fourier transform of the samples. This means
that we do not expect the (complex-valued) sinusoidal model
to fit even accurately the samples. Yet, we first observe, then
demonstrate on a class of laminar images (typically, whose
generator has the maximum of its frequency spectrum away
from 0) that this unique frequency is a very robust predictor
of the slope of the trajectory. This allows us to show that,
under a constant (or varying, but known) speed hypothesis,
the 2D trajectory of the sensor can be accurately retrieved up
to a rotation plus a shift. We verify this finding in various
conditions (real images, very noisy laminar images, etc). A
decisive advantage of fitting a unique complex exponential is that
this problem has an exact, non-iterative solution (relying on the
roots of some polynomial), which ensures that our observations
are not dependent on inaccuracies of the fitting process—as may
be the case of our previous method.

This technique of extracting and visualizing 2D geometries
from as little as a stream of 1D non-positioning samples could be
very useful in a wide variety of practical applications. Actually,
the laminar (i.e., directional) model is widespread in the real
world. For instance, the earth geological formation is typically
layered into separations of sediments and rocks as shown in
Fig. 1(b); muscle tissues are also layered due to their fiber struc-
ture as shown in Fig. 1(c). A direct application is the underwater
sound source localization and tracking (see Fig. 2(a)). Due to the
fast attenuation of radio waves underwater, people often choose
sound waves for positioning. A very common localization tech-
nique is to identify the acoustic striation patterns of the ocean bed
(at sufficient distance from the source) as shown in Fig. 2(b) [16].
Usually, it is then necessary to deploy dense sensor arrays over a
sufficiently large area so as to acquire reliable acoustic intensity
images as shown in Fig. 2(b). Taking advantage of the laminar

Fig. 2. A variety of potential applications. (a) Hydroacoustic positioning. (b)
acoustic striation patterns. (c) Seismic imaging in oil/gas detection.

structure of the acoustic data, our algorithm could allow to
identify the distance between the mobile sensor and the source in
a more economic way. As a benefit, the measured area could be
enlarged significantly and the hardware cost of densely deployed
sensor arrays could be largely reduced. Another direct applica-
tion is geophysical imaging that aims to map the geological
structure and formation of the subsurface, a core procedure in
many geo-industrial applications, e.g. oil/gas prospecting and
ocean bottom sensing as shown in Fig. 2(c). By reinterpreting
the retrieved 2D geometry (e.g. image directionality, slopes, etc.)
geologically, our method could possibly be incorporated into
the existing seismic imaging techniques to provide clearer and
cleaner subsurface images.

Finally, we would like to point out that our method is more
than trajectory retrieval, as it also provides a new visualization
tool to interpret arbitrary (non-geometric) 1D time-series geo-
metrically. By checking the sample-mismatch level (see Sec-
tion IV), we can quantitatively measure the “laminarity” of the
underlying (fictitious) image, using only the available 1D data.
In particular, our method may prove useful to visualize a host
of real 1D signals without explicit 2D origin, such as speech,
music, biomedical signals etc. We believe that the retrieved
2D geometric features (such as trajectory curvature, crossings,
length etc.) could be used for discrimination, classification and
recognition.

Structure of the paper: Section II describes the methodology
of trajectory retrieval using the unique-sinusoid fitting strategy:
we first provide a visual intuition of how the frequencies found
relate to the slope of a linear trajectory, and give examples
ranging from synthetic laminar images to real images, that
demonstrate the determinism and consistency of these frequen-
cies; then we provide a mathematical explanation to validate
the visual observation, which gives rise to the laminar sam-
pling theorem. We develop the reconstruction hypotheses and
detail the complete method that leads to an efficient algorithm
in Section III. Experimental results including simulations on
synthetic laminar images, and tests on real images are presented
in Section IV. We conclude the paper by summarizing our main
results and evoking possible extensions of this work (Section V).

II. THE GEOMETRY IN THE SAMPLES OF A LAMINAR IMAGE

A. Sampling a Laminar Image Along a Curve

We are given a sequence of 1D (non-positioning) sensor
measurements sn = I

(
r(n/Fs)

)
sampled uniformly (sampling

frequency = Fs) from a 2D laminar image defined by

I(r) = g(uTr), where ‖u‖ = 1 (1)
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Fig. 3. Our goal is to retrieve the sampling trajectory (b) of the mobile sensor
and the image (a) from the measured 1D samples (d) (framed in red box).

along some unknown 2D trajectory r(t). The goal is then to
retrieve that trajectory. Fig. 3 provides a visual depiction of this
problem.

At first glance, this objective seems unreasonable because the
problem is seriously ill-posed due to the loss of bidimensional
information. However, we know from [14], [17] that the geom-
etry of the trajectory can be retrieved from these samples when
the image is made of a sum of 2D sinusoids. We will show
that, by just fitting the samples with a single 1D sinusoid, we
can readily retrieve valuable geometric features as well, when
the image is laminar. Moreover, we will demonstrate that these
features are quite consistent along the trajectory, and very robust
in noisy/model mismatch conditions. Our purpose is to utilize
them to achieve trajectory retrieval (up to a rotation plus a shift).

B. Visual Intuition

First, we observe that sampling a laminar image along straight
lines of different orientations results in roughly scaled versions
of the same 1D signal (see Fig. 4(a)). This observation still holds
for real images with clear directionality as shown in Figs. 4(b)
and (c).

We propose to identify this scale change by computing the
frequencyω of the complex exponential that best fits the samples
of the image I(r) along a straight line parametrized as r(t) =
at+ b. Ideally, we want to find ω̂ that minimizes the power
spectrum density-like criterion

J(ω) = inf
A∈C

lim
T→∞

1

T

∫ T/2

−T/2

∣∣I(r(t))−Aejωt
∣∣2 dt. (2)

In practice, though, we will minimize a windowed version of (2)

J(ω) = inf
A∈C

∫
wT (t)

∣∣I(r(t))−Aejωt
∣∣2 dt, (3)

Fig. 4. Scaling feature of the 1D laminar samples. (a) From top to bottom:
sampling the synthetic laminar along different directions gives rise to a precise
scaling relationship. Moreover, this scaling relationship still holds approximately
for many natural images, like (b) and (c).

where wT (t) is a positive function of integral one, that we will
typically choose to be Gaussian

wT (t) =
1√
4πT 2

exp
(
− t2

4T 2

)
. (4)

In practice, we work with discrete samples, that we assume to be
obtained at a frequency Fs that is large enough for the integrals
involved in (2) and (3) to be well approximated by Riemann
summations.

As is well-known, this type of optimization amounts to max-
imizing the absolute value of the windowed Fourier transform
of the samples. Note that both ω̂ and −ω̂ are solutions of the
minimization of (2) and (3) because the 1D samples are real-
valued. We give an algorithm in the supplementary materials,
that finds the solutions of the minimization of a discretization
of (3) exactly.

Of course, we do not pretend that the samples I
(
r(t)

)
can be

accurately fitted by a complex exponential. Yet, we will show
that the frequency obtained as a result of this minimization
changes linearly with the scale change; i.e., with uTa since
I
(
r(t)

)
= g

(
uTat+ uTb

)
. This means that, eventually, the ori-

entation of the line, a, can be retrieved from this scale change.
Rotational continuity: We design a rotation experiment to

further visualize the relation between the angle of the line and
the frequency retrieved: for every angle of the straight line
segment, we compute the optimal frequency (2) and plot the
relation between these two variables (see Fig. 5). The estimated
1D frequencies show a very consistent pattern, as can be checked
by following their visual continuity.

Interestingly, we observe that the frequency pattern obtained
is also very robust to noise. We add strong white noise (PSNR =
0 dB, see Fig. 6(a)) to the laminar image in Fig. 5(a): the
comparison of the frequency patterns in Fig. 6(b) vs Fig. 5(b)
for the two images shows that they are very similar.

Moreover, we observe that continuous frequency patterns are
surprisingly widespread in many “less-laminar” real images.
The continuity of the patterns are made even more obvious if
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Fig. 5. Rotation test. (a) Laminar image. (b) Graph showing the frequency
of the sinusoid that best fits the samples along a straight line (“segment”) with
varying orientation angles. Notice that two symmetric solutions ω̂ and −ω̂ are
the optimal solutions to the fitting problem 2 (real-valued samples).

Fig. 6. Robustness of the designed rotation pattern against noise. (a) Noisy
Laminar image (PSNR=0 dB). (b) Rotation pattern of the signal scaling feature.
Observe that, the rotation pattern is very robust to noise.

Fig. 7. Examples of success. From top to bottom: test images; estimated 1D
scaling features; denoised 1D scaling features. From left to right: (a) Wood grain;
(b) Needle Leaves; (c) Building. We can observe that there are deterministic
patterns in the raw 1D scaling features (second row).

we include the “second best” frequency obtained in the mini-
mization of (3) (see Fig. 7 and also Fig. 2 of the supplementary
materials).

These visual observations suggest that the “best fitting” fre-
quency of the samples of an image along a straight line is
related to the slope of this line. Eventually, this indicates that,
by estimating the local frequency of 1D samples, it is possible
to reconstruct the 2D trajectory along which the (“laminar-
like”) image has been sampled. However, frequency continuity
is not sufficient for that purpose. It is also necessary for the
angle-to-frequency pattern to reflect directly the scale change
that results from an orientation change; i.e., that frequency ∝

sin(angle + const) — Rotational continuity, see Section II-C
for details.

On the other hand, images that are less directional are less
likely to exhibit the rotational continuity that characterizes
“laminar-like” images or even mere continuity of the frequency
pattern (see Fig. 2 in the supplementary materials).

C. Theory

How can the consistency of the patterns observed in the
previous subsection be explained mathematically? We first ex-
plore the theory under the ideal situation where the observation
window is of infinite length, and then extend it to the practical
case of windows of finite length.

Infinite window: Let us denote s(t) = I
(
r(t)

)
and assume

that the limits

Ps = lim
T→∞

1

T

∫ T/2

−T/2

∣∣s(t)∣∣2 dt,
As(ω) = lim

T→∞
1

T

∫ T/2

−T/2

s(t)e−jωtdt

are well-defined: this is in particular the case when s(t) is a
finite sum of complex exponentials. A useful result is that, when
s(t) = cejω0t then Ps = |c|2 and

As(ω) = c 1(ω − ω0) =

{
c, if ω = ω0;

0, otherwise.
(5)

which is readily obtained by replacing s(t) = cejω0t in the
expression that defines As(ω).

Theorem 1: Assume that the image I(r) is made of a finite
sum of complex exponentials

I(r) =
K∑

k=1

ck exp(jω
T
kr)

where K is finite, ck are complex-valued coefficients and ωk

are real-valued 2D vectors. Denote by s(t) the samples of this
image along the straight line defined by r(t) = ta+ b, where
we assume that all theωT

ka are distinct. Then the minimum of (2)
over all ω is attained by ωT

k0
a where the index k0 is such that

|ck0
| = maxk |ck| (several solutions possible).

Proof: Minimizing the ideal criterion (2) is equivalent to
maximizing |As(ω)|2 over all values of ω because

lim
T→∞

1

T

∫ T/2

−T/2

∣∣s(t)−Aejωt
∣∣2 dt

= S2 − 2Re
{
A∗As(ω)

}
+ |A|2

≥ S2 − |As(ω)|2

for all A ∈ C, with equality if and only if A = As(ω).
Now, when

s(t) = I(r) =

K∑
k=1

ck exp(jω
T
kb) exp(jtω

T
ka)
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As(ω) can be expressed as

As(ω) =

K∑
k=1

lim
T→∞

ck exp(jω
T
kb)

T

∫ T/2

−T/2

exp
(
jt(ωT

ka− ω)
)
dt,

=

K∑
k=1

ck exp(jω
T
kb) 1(ω − ωT

ka).

Since, by assumption, all the ωT
ka are distinct, the above ex-

pression is non-zero only when ω = ωT
ka and, in that case,

|As(ω)| = |ck|. Hence, the maximum of |As(ω)| is attained
when the amplitude |ck| is maximal. �

It is important to stress that the minimization of (2) results in
the maximization of a function, |As(ω)|, whose local maxima
arise exactly at the frequencies ωT

ka. This shows that, not only
the global maximum, but also the local maxima follow the same
pattern: the scalar product between an image dependent feature
(2D frequency), and the slope of the sampling line.

Corollary 1: Assume that the image I(r) is laminar; i.e.,
I(r) = g

(
uTr

)
where the g is a univariate “generator”, for which

we assume that |Ag(ω)| has a unique maximum at ω = ωg ,
the generator frequency. Denote by s(t) the samples of this
image along the straight line defined by r(t) = ta+ b, then
the minimum of (2) over all ω is attained by ω = ωg u

Ta.
Proof: Using that s(t) = g

(
tuTa+ uTb

)
, we find

As(ω) = lim
T→∞

1

T

∫ T/2

−T/2

g
(
tuTa+ uTb

)
e−jωtdt

= lim
T→∞

ejωuTb/uTa

T |uTa|
∫ T |uTa|/2+uTb

−T |uTa|/2+uTb

g(t)e−jωt/uTadt

= ejωuTb/uTaAg

(
ω/uTa

)
.

Hence, the maximum of |As(ω)| is attained by ω = ±ωg u
Ta,

where ±ωg is the frequency for which |Ag(ω)| is maximum. �
This demonstrates that, if the generator frequency is different

from 0, then the frequency obtained through the minimization of
the ideal criterion (2) provides one component, uTa, of the slope
a of the sampling line, up to a multiplicative constant, which is
what was observed in Figs 5, 6 and real image examples (also
see Fig. 1 in the supplementary materials).

Cor. 1 is actually more useful than Thm. 1 when K is large
because, in that case, the condition on the distinctness of the
frequencies along the slopea is prohibitive: if the 2D frequencies
ωk are not pairwise parallel, there are

(
K
2

)
= K(K − 1)/2

possible values of a that make ωT
ka = ωT

k′a for some k, k′.
Obviously, this would result in too many “forbidden” slope
directions for the statement of Thm. 1 to be useful.

Instead, when all the frequencies are parallel (laminar image),
the condition reduces to avoiding that a and ωk are perpendic-
ular, in which case the optimal frequency retrieved is zero. For
all the other frequencies, the conversion to a slope orientation is
feasible.

Finite window: In practice, we have only a finite number of
samples and we have to optimize the criterion (3) instead. In
order to be able to use the optimization results of Thm 1 and
Cor 1, we have to show that the frequency obtained is not “too

different” from the ideal one—which provides the orientation of
the sampling line.

Notation: Assume that the image I(r) is the real part of a
sum of complex exponentials

I(r) = Re
{
c0 exp(jω

T
0r)

}
+

+∞∑
k=1

ck exp(jω
T
kr) (6)

where ck are complex-valued coefficients (|c0| > |ck|, k ≥ 1)
and ωk are real-valued 2D vectors. Then, for ωT

0a �= 0, we
denote ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

γ0 = 1− sup
k≥1

|ck|
|c0| ≥ 0

Δ0 = inf
k≥1

(∣∣∣ωT
ka

ωT
0a

− 1
∣∣∣, ∣∣∣ωT

ka

ωT
0a

+ 1
∣∣∣)

Δ1 = inf
k �=k′≥1

|(ωk − ωk′)Ta|
|ωT

0a|
which allows us to define the positive function (which may
assume infinite values)

Q(λ) = (1− γ0)

(
1 +

e−λ
2
Δ2

1/4

1− e−3λ
2
Δ2

1/4
+

2e−λ
2
Δ2

0

1− e−3λ
2
Δ2

0

)

+ 2e−λ
2

.

Theorem 2: Denote by s(t) the samples of the image (6)
along the straight line r(t) = ta+ b. Then, if Q(TωT

0a) < 1,
the minimization of (3) over ω ∈ R results in a frequency ω̂
which is such that

∣∣|ωT
0a| − |ω̂|∣∣ ≤

√
− log(1−Q(TωT

0a))

T
.

Please see Appendix C for the proof. When T is sufficiently
large, this uncertainty reduces to

√− log γ0/T . This uncertainty
is small when, either γ0 is closer to 1 (i.e., the laminar image is
essentially made of a single sinusoid), or when T is large, which
can compensate for small values of γ0 (i.e., when the laminar
image has a richer frequency contents). Also note that the
condition Q(TωT

0a) < 1 automatically rules out the possibility
that γ0 = 0—in which case Q(λ) > 1 for all λ ≥ 0.

Applying this theorem to a laminar image (1), we have the fol-
lowing results on the sinusoid fitting accuracy (see Appendix V-
D for the proof):

Corollary 2: Assume the 2D image frequencies are all along
the direction u, i.e.

ω0 = ωgu,ωk = ωku, k ≥ 1.

We denote by λ̂ the unique value of λ for which Q(λ) = 1.
Then, if |uTa| > λ̂/(ωgT ), minimizing (3) over ω ∈ R results
in a frequency ω̂ that provides the geometric information |uTa|
up to an uncertainty

∣∣|uTa| − |ω̂/ωg|
∣∣ ≤ √− log(1−Q(ωgTuTa))

ωgT
. (7)

When |uTa| is not very close to λ̂/(ωgT ), this uncertainty
reduces to

√− log γ0/(ωgT ).
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Although an exact expression of λ̂ mixes in an intricate way
Δ0, Δ1 and γ0, a close lower bound is given by:

λ̂ > max
(√

− log γ0,
2
√− log γ1

Δ1
,

√− log γ2
Δ0

)
where

γ1 =
3

√√√√1

2
+

√
1

4
+

(1− γ0)3

27γ3
0

+
3

√√√√1

2
−
√

1

4
+

(1− γ0)3

27γ3
0

,

γ2 =
3

√√√√1

2
+

√
1

4
+

8(1− γ0)3

27γ3
0

+
3

√√√√1

2
−
√

1

4
+

8(1− γ0)3

27γ3
0

.

It should be noted that, our requirement |uTa| > λ̂/(ωgT )
automatically ensures that the generator frequency is different
from 0. Several useful observations can be deduced from Corol-
lary 2, for the frequency estimation technique to yield reliable
geometric information:
� first, since Q(λ) > 1− γ0, the sampling line seg-

ment should be long enough so that the uncertainty√− log γ0/(ωgT ) is controlled (see Section III-B): T can
be short if the laminar image is essentially made of one
sinusoid, but in more complex cases (sinusoids of close
amplitudes), it has to be larger;

� second, even when the segment is long enough, line di-
rections that are too close to the laminar direction (per-
pendicular to u) cannot be retrieved accurately: given the
lower bounds on λ̂, the scalar product |uTa| has to be larger
than

√− log γ0/(ωgT ), and this lower bound deteriorates
when the image changes too slowly. Similarly, assuming
thatΔ1 ≈ Δ0, the scalar product |uTa| has also to be larger
than2

√− log γ2/(Δ1ωgT ), which shows that the direction
estimation deteriorates when the frequencies of the laminar
image are too close to each other—irrespective of their
amplitudes.

Corollary 2 is able to explain the pattern seen in Fig. 5: assum-

ing that a =
(
cos θ, sin θ

)T
(‖a‖ = 1 for simplicity here) where

θ is the “segment angle,” Corollary 2 predicts that, when |uTa| >
λ̂/(ωgT )—i.e., when θ is away from the intervals π/2 + nπ +

[− arccos(λ̂/(ωgT )), arccos(λ̂/(ωgT ))] (n integer)—the graph
of the optimal frequency in function of θ is essentially the
graph of ωgu

Ta = ωg cos θ; wheras, when θ is in the intervals
π/2 + nπ + [− arccos(λ̂/(ωgT )), arccos(λ̂/(ωgT ))] (n inte-
ger), the error is not controlled and, in practice, the optimization
algorithm returns 0 as the best-fit frequency (see Fig. 8).

Clearly, λ̂ is a critical value which characterizes the “con-
ditioning” of a laminar image, independently of the segment
length T and of the main laminar frequency ωg . In practice,
given a laminar image, ωg and λ̂ can be figured out directly
from a rotation experiment: choosing a value of T for which
the sinusoidal pattern is readily observed, ωg is obtained from
the maximum amplitude of that sinusoid, whereas λ̂ is obtained
from the discontinuity jump (see zoomed area in Fig. 8) that
characterizes the loss of accuracy of the frequency estimation
when the laminar image is sampled along the laminar direction.

Fig. 8. Visualization of the results of Corollary 2, in relation to the rotation
experiments of Section II-B.

III. RECONSTRUCTION OF SAMPLING TRAJECTORIES

We have seen (Sections II-B and II-C) that estimating a single
frequency from the samples of a laminar image provides the
slope of the sampling line, up to a multiplicative constant, ωg ,
defined in Cor. 1. In order to generalize this result to arbitrary
curves, we need to be able to approximate them accurately by
piecewise-linear segments of fixed length T , and to calculate
this constant. To this end, we essentially need the trajectory of
the sensor to have a small curvature, and that one of its slopes,
at least, corresponds to the largest frequency achieved when
considering all orientation angles.

A. Hypotheses

In details, however, we need more specific hypotheses on the
kinematics of sensor:

1) Velocity-related:
a) the speed of the sensor ‖r′(t)‖ is a constant, which we

practically set to 1 in the rest of the paper;
b) there exist sampling points where the trajectory is per-

pendicular to the laminar direction; and these points
are not inflection points (visualization: see Fig. 5 a and
5b in the supplementary materials).

2) Acceleration-related: continuous differentiability of the
curvature at most points on the trajectory or, more accu-
rately, quadratic predictibility of the first order derivative
r′(t), which provides a rule to choose between several
frequency estimates;

In addition, we also need prior knowledge of κmax (i.e.
the maximum curvature of the trajectory) and of λ̂ for which
Q(λ̂) = 1.

B. Parameter Determination

Trajectory retrieval relies on specifying a segment length, T ,
and on identifying the proportionality constant ωg involved in
Corollary 2.

Estimation of the generator frequency: The generator fre-
quency ωg can be estimated by exploiting Hypothesis 1b which
states that there exists a point on the trajectory where the mobile
sensor moves perpendicular to the laminar direction—hence,
parallel to u. As a consequence, this constant can be obtained
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according to

ωg = max
t

|ω(t)|
‖r′(t)‖ = max

t
|ω(t)| (8)

since ‖r′(t)‖ = 1 according to Hypothesis 1a.
Determination of the segment length:Considering the curva-

ture of the trajectory: in a [t0 − T/2, t0 + T/2] neighborhood,
the parabolic approximation (second-order Taylor) of the curve
parametrization takes the form

r(t) = r(t0) + (t− t0)r
′(t0) +

κ(t0)(t− t0)
2

2
r̃′(t0) (9)

where r̃′(t0) is the unit vector perpendicular (counterclockwise)
to r′(t0), and κ(t0) is the curvature at t0 (from Frenet-Serret’s
formulas). Hence, κmax = maxt0 |κ(t0)| (of which we have
prior knowledge) should be small, to ensure the closeness be-
tween the curve and its closest piecewise-linear approximation,
yet not too small, to prevent the curve direction from staying
parallel to the laminar direction over more than one segment.
More precisely:
� given that the best approximation of (9) by a straight line
r(t) = (t− t0)a+ b leads to a = r′(t0) and a minimal
error of |κ(t0)|T 2/16, we typically require that this error is
smaller than 3% of the segment length; i.e., κmaxT ≤ 1/2;

� from Corollary 2, in order to guarantee that |uTr′(t0)|
and |uTr′(t0 ± T )| are not altogether≤ λ̂/(ωgT ), we need
that |uTr′(t0 ± T )− uTr′(t0)| ≥ λ̂/(ωgT ) when uTr′(t0)
is close to zero; i.e., |κ(t0 ± T/2)| ≥ λ̂/(ωgT

2), which
implies that κmax ≥ λ̂/(ωgT

2).
As a consequence, the segment length T is constrained by√

λ̂

ωgκmax
≤ T ≤ 1

2κmax
. (10)

In principle, any value ofT within this “safe” range is acceptable
for our method.

C. Frequency Tracking

We find the minimum of (3) for every segment of samples ac-
quired by the sensor, which provides a sequence of frequencies,
indexed by the segment index. However, there are two issues to
consider:

1) both ω and −ω are the optimal solutions of the minimiza-
tion of (3), since the sensor samples are real-valued;

2) the fitting frequency is less reliable when its absolute value
is small; i.e., when the sampling curve is parallel to the
laminar direction—perpendicular to u.

Hence, finding the frequency of each segment amounts to
selecting correctly either +ω or −ω.

The key idea that makes it possible to track the fitting fre-
quency of each segment is based on the continuity of the trajec-
tory slopes (Hypothesis 2). As a result, the scalar productuTr′(t)
is continuous which guarantees that, as long as the values found
are significantly different from zero, we can unambiguously
identify which of ±ω is the correct result.

When the values found get closer to zero, we have to use a
more quantitative prediction principle. Thanks to Hypothesis 2,

we know that the first order derivative r′(t) can be approximated
locally by a quadratic function of t. In other words, the frequency
of a trajectory segment can be predicted by fitting a quadratic
model to its adjacent frequencies (typically six). The decision
between +ω and −ω can then be made by choosing the sign that
results in the smallest prediction error. A further refinement of
this strategy consists in testing the quadratic prediction with the
“second best” fitting frequencies as well, then choosing the best
one of the four frequency candidates.

A causal (towards increasing values of t) implementation of
our frequency tracking approach requires initialization, which
can be performed by trying all choice options (i.e., four different
frequencies) for all the samples used at once in the prediction
formula (typically six samples), and retaining the choice that
minimizes the prediction error.

D. Slope and Trajectory

Once the proportionality constant ωg is known, the scalar
product uTr′(t0) of the trajectory segment centered at t = t0
can be retrieved from the frequencies that are tracked in each
curve segment according to the formula uTr′(t) = ω(t)/ωg .
From such scalar products, the complete slope of the trajectory
can be calculated at every point since ‖u‖ = 1, although it will
be necessary to remove a sign ambiguity in this process. Finally,
integrating the slope provides the trajectory of the sensor.

More precisely, denoting by ũ the unit vector perpendicu-
lar to u in the counterclockwise orientation (i.e., det(u, ũ) =
1), from uTr′(t) we get ũTr′(t) = ±

√
‖r′(t)‖2 − (uTr′(t))2,

where ‖r′(t)‖ is a known constant. How can the sign of this
expression be determined without ambiguity? For this, we apply
two principles:

1) predictability of the slope (Hypothesis 2), which guar-
antees that, for values of t where the adjacent values of
uTr′(t) are not close to the maximum, ‖r′(t)‖, then the
calculated ũTr′(t) should have the same sign;

2) no inflection points have a slope parallel to u (Hypoth-
esis 1b) which guarantees that when uTr′(t) reaches its
maximum, then the signum of ũTr′(t) changes as it crosses
0.

Once uTr′(t) and ũTr′(t) have been calculated, we obtain
r′(t) as

r′(t) = uTr′(t) · u+ ũTr′(t) · ũ, (11)

which can then be integrated to yield r(t), up to a shift. Of
course, since u is unknown, this also means that the trajectory
is retrieved up to an arbitrary rotation. Fig. 10.

E. Image Reconstruction

Together with the sampling trajectory r(t), the 2D laminar
image can also be reconstructed using the 1D samples as shown
in Mathematically, for every location r on the curve, we have
that

I
(
r+ αũ

)
= I

(
r
)
, α ∈ R. (12)

This suggests a simple algorithm whereby, we reconstruct the
pixel values of the image based on the their “backprojection”
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Fig. 9. Flowchart of the retrieval algorithm: the 2D trajectory (b) can be
accurately reconstructed (up to a rotation plus a shift) from the 1D samples
(d), whereas the image is retrieved by “backprojecting” the samples along the
laminar direction.

Fig. 10. Illustration of the image reconstruction scheme.

onto the trajectory (along the laminar direction ũ). More pre-
cisely, if the backprojection intersects the curve at multiple
points, we choose the median of the values at these points
(more robustness to outliers). Moreover, this process provides
a criterion for quantifying the quality of the trajectory retrieval:
the 1D samples of the laminar image reconstructed using the
above algorithm, along the trajectory retrieved in the previous
subsection should match the 1D samples acquired by the mobile
sensor. This matching accuracy is particularly useful in the
practical cases where the ground-truth trajectory and image are
unknown. A global view of the entire solution is shown in Fig. 9
and Algorithm. 1.

IV. EXPERIMENTS

In this section, we demonstrate that the proposed algorithm
is able to retrieve the 2D trajectory and the laminar image only
from a sequence of 1D non-positioning samples of the image

Algorithm 1: 2D Geometry Retrieval Algorithm.
Input: 1D sample sn, prior knowledge of curvature κmax

1: Determine segment length T (10)
2: for l = 1 to number of segments do
3: Fit segment samples with a unique complex

exponential (3)
4: end for
5: Track single frequency via the quadratic predictibility

(See Sec. III-C)
6: Estimate generator frequency ωg (8)
7: Calculate trajectory slopes based on its continuity (See

Sec. III-D)
8: Reconstruct sampling trajectory (11)
9: Reconstruct image based on pixel backprojection onto

the trajectory (12)
Output: Sampling trajectory and image.

along that trajectory. We first validate the sampling theorem
(i.e. Thm. 2) by simulations on synthetic laminar images in
various conditions. Then, we demonstrate the robustness and
accuracy of our algorithm by applying it to a number of real
directional images. To perform these tests, we have implemented
our algorithm in python on a MacBook Pro 2015 with a 4-core
CPU and 16 GB of RAM. The whole computation time of each
individual experiment is within 2 seconds.

A. Evaluation Metrics

In order to quantify the accuracy of our algorithm, we define
two types of metrics:

1) trajectory accuracy: ideally, we would like to evaluate
the smallest possible distance between the ground-truth
curve, parametrized by r0(t), and the reconstructed one,
parametrized by r(t), up to a possible 2D perpendicular
transformation Q (i.e., QQT = Identity) and a 2D shift q;
more specifically, we would like to evaluate the absolute
error (in pixels)

inf
q∈R2

Qperpendicular

(∫
inft′ ‖r0(t)−Q · r(t′)− q‖2 dt

length of curve

)1/2

However, for the sake of simplicity, we avoid performing
the inft′ by assuming that the two curves have the same
parametrization, which leads to

errtrajectory

def
= inf

q∈R2

Qperpendicular

‖r0(t)−Qr(t)− q‖2√
length of curve

(in pixels) (13)

which is larger than the “ideal” error expression, but can
be calculated exactly by solving an eigenvalue problem.

2) image accuracy: the matching accuracy between the sam-
ples s(t) = I

(
r(t)

)
of the reconstructed image I(r) along

the reconstructed trajectory and the known samples s0(t)

Authorized licensed use limited to: Imperial College London. Downloaded on October 31,2024 at 19:27:15 UTC from IEEE Xplore.  Restrictions apply. 



GUO AND BLU: EXPLORING THE GEOMETRY OF ONE-DIMENSIONAL SIGNALS 5307

Fig. 11. Validation of Corollary 2: frequency estimation error in function of
the slope of the line (i.e., |uTa|). Left: small laminar frequency ωg (approxi-

mate λ̂/(ωgT ) value is 0.12); right: large laminar frequency ωg (approximate

λ̂/(ωgT ) value is 0.12).

is quantified by the SNR

errsamples
def
= 20 log10

( ‖s0(t)‖2
‖s(t)− s0(t)‖2

)
(in dB)

(14)

B. Tests With Synthetic Laminar Images

We validate our theoretical results and the trajectory retrieval
algorithm by conducting the following simulations. Varying
parameters of the laminar image:

1) Dependence of the sinusoid fitting error on the dominant
frequency;

2) Dependence of the sinusoid fitting error on the relative
amplitude separation;

Varying parameters of the sampling trajectory:
1) Dependence of the curve reconstruction error on the tra-

jectory curvature κmax;
2) Dependence of the curve reconstruction error on the tra-

jectory length.
Robustness tests in the presence of noise are presented in the

supplementary materials.
In all the experiments in this part, the univariate function g

of the laminar image is made up of 20 sinusoids, an instance of
which is shown in Fig. 1(a) (1400× 1400). The other quantitities
involved in Corollary 2 are left unchanged: Δ0 = 0.7, T = 41,
Δ1 = 1.2.

Direction estimation: In this series of experiments, we vary
the orientation of a single straight line along which we sample the
laminar image, evaluate empirically the accuracy of the retrieved
slope, which we compare to the prediction of Corollary 2. We
manipulate one parameter of the laminar image at a time to assess
its influence.

1) Main Laminar Frequency (ωg): Fig. 11 shows how the
sinusoid-fitting error

∣∣|ω̂| − |ωgu
Ta|∣∣ changes with the scalar

product |uTa| (with ‖a‖2 = 1) under two different values of ωg .
To better visualize the spread of this error, as well as its overall
amplitude, 10 realizations (by randomly shifting the laminar
image) are processed for each value of |uTa|. The corresponding
image conditioning λ̂ is: 1.312 (ωg = 0.2) and 6.888 (ωg = 1.2).
The other quantities involved in Corollary 2 are left unchanged:
T = 41, Δ0 = 0.7, Δ1 = 1.2 and γ0 = 0.5.

Fig. 12. Validation of Corollary 2: frequency estimation error in function of
the slope of the line (i.e., |uTa|). Left: small relative amplitude difference γ0

(approximate λ̂/(ωgT ) value is 0.15); right: large relative amplitude difference

γ0 (approximate λ̂/(ωgT ) value is 0.08).

As can be seen from Fig. 11, within the validity region
specified by Corollary 2 (i.e., |uTa| > λ̂/(ωgT )), the predicted
value is effectively an upper bound of the estimation error, and
this prediction is reasonably close to the actual (worse case)
errors. We also see that the approximate value of λ̂/(ωgT ) that
we are proposing is reasonably close to the actual one.

2) Relative Amplitude Separation (γ0): Fig. 12 shows how
the sinusoid-fitting error

∣∣|ω̂| − |ωgu
Ta|∣∣ changes with the scalar

product |uTa| (with ‖a‖2 = 1) under two different values of
γ0, which controls how dominant the main laminar frequency
ωg is, relative to the others. To better visualize the spread of
this error, as well as its overall amplitude, 10 realizations (by
randomly shifting the laminar image) are processed for each
value of |uTa|. The corresponding image conditioning λ̂ is:
1.476 (γ0 = 0.25) and 1.148 (γ0 = 0.67). The other quantitities
involved in Corollary 2 are left unchanged: ωg = 0.2, T = 41,
Δ0 = 0.7, and Δ1 = 1.2.

Again, within the validity region specified by Corollary 2 (i.e.,
|uTa| > λ̂/(ωgT )), the predicted value is clearly an upper bound
of the estimation error, and this prediction is reasonably close to
the actual (worse case) errors. We also see that the approximate
value of λ̂/(ωgT ) that we are proposing is reasonably close to
the actual one.

Trajectory estimation: In this part, we investigate the accuracy
of the trajectory estimation, depending on some of its character-
istics (curvature, length). The laminar image, on the other hand,
is kept unchanged from the previous experiments: ωg = 0.2,
T = 41, Δ0 = 0.7, Δ1 = 1.2, and γ0 = 0.5, which leads to
λ̂ = 0.902.

Here, the sampling trajectory of the mobile sensor is
parametrized by

r0(t) =

(∫ T

0

cos
(
θ(τ)

)
dτ,

∫ T

0

sin
(
θ(τ)

)
dτ

)T

.

where, by construction, θ′(t) is the curvature κ(t) of the tra-
jectory, given that t is its arclength. We express θ(t) as an
M -periodic Fourier series

θ(t) = Re

{K−1∑
k=0

αk exp
(
j
2πkt

M

)}
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Fig. 13. Center row: reconstruction error errtrajectory and errsamples vs
κmax, the maximal curvature of the trajectory. For each value of κmax, ten
realizations with random shifts of the trajectory are performed. Top row: ground-
truth frequency (red), retrieved frequency (blue). Bottom row: ground-truth
trajectory shown (red), reconstructed trajectory (blue).

where αk are generated randomly. This function changes all the
more slowly as the curve length, M , is larger.

We use both the curve distance errtrajectory and sample-
mismatch level errsamples to evaluate the trajectory reconstruc-
tion accuracy.

3) Effect of the Curvature: By manipulating κmax =
maxt |θ′(t)|, we can adjust the curvature of the sampling tra-
jectory continuously. Fig. 13 shows how the two metrics that
we have defined in (13) and (14) change, when the (maximal)
curvature changes. As can be seen, in all cases the trajectory
is recovered accurately (compared to the size of the image). In
addition, the laminar image can also be reconstructed, and the
resulting SNR varies from 8.42 dB (smallest curvature radius)
to 31.24 dB (largest curvature radius). The relatively low SNR
values may be explained by an accumulation of inaccuracies on
both the image and the trajectory.

Here, the range of “safe” curvature values (see Section III-B)
is κ ∈ [0.005, 0.009]. Although smaller values also lead to high
accuracy, it should be pointed out that for curvature smaller
than 0.0025, we observe a loss of accuracy, as predicted in
Hypothesis III-B.

4) Effect of the Length of the Trajectory: Error accumulation
is expected in our problem since what is estimated directly is
essentially the derivative r′(t) of the trajectory. Intuitively, this
drift is very likely to increase with the trajectory length, in line
with our former results results [14, Theorem 2]). Yet, we observe
that, in reality, the error accumulation rate is small.

Fig. 14 shows how the trajectory reconstruction error changes
with the trajectory length. In all cases, the laminar image can be
reconstructed accurately with a PSNR between30 dB and33 dB.
In all cases, it is impossible to visually distinguish between the
ground-truth (red) and the retrieved trajectories (blue).

C. Tests With Real Images

In this subsection, we show that it is possible to re-
trieve trajectories sampled on real images that happen to be
approximately laminar. To understand which real images are

Fig. 14. Center row: reconstruction error errtrajectory and errsamples vs
trajectory length. For each curve length, ten realizations with random shifts of the
trajectory are performed. Top row: ground-truth frequency (red), retrieved fre-
quency (blue). Bottom row: ground-truth trajectory shown (red), reconstructed
trajectory (blue).

suitable for trajectory retrieval, we apply the following proce-
dure

1) Using a rotation experiment with a segment length T that
is as large as possible (e.g., the smallest dimension of the
image), estimate the value of λ̂ and ωg (see Fig. 8), then
check that, according to Hypothesis III-B, λ̂ ≤ 0.5ωgT ;

2) On the same rotation experiment, estimate γ0 from the
uncertainty of the best-fit frequency (7);

3) Choose T according to (10), which sets an up-
per limit of 1/(2T ) to the maximal curvature κmax

(see Section III-B).
Larger values of T trade a lower trajectory slope uncertainty

(hence, a higher accuracy of the trajectory itself) for a smaller
curvature. In practice, when real images fail to be sufficiently
laminar it is because the only trajectories that they allow to
retrieve with acceptable accuracy, have a curvature that is so
small that the value of T needed is larger than the size of the
image.

There are important differences between the synthetic, per-
fectly laminar images that we have shown so far, and real,
imperfectly laminar images:
� real images have a strong DC component (mean value)

which means that the best-fit frequency is always zero.
To mitigate this issue, we high-pass filter the 1D samples
above an empirical low cutoff frequency value (typ. 0.01),
hence preventing to estimate lower frequencies;

� real images frequently have too few pattern repetitions,
making it impossible to improve accuracy by increasing
the segment length T .

Typically, for imperfectly laminar real images, the link be-
tween best-fit frequency and the geometry |uTa| is still valid
locally, but the multiplication factor,ωg , may vary (albeit slowly)
along the samples, making it difficult to retrieve a complete
trajectory with high accuracy without this information.

We first apply our algorithm to real wood textured images. As
shown in Fig 15, trajectories with small curvature can be nicely
retrieved with a good accuracy, demonstrating the feasibility
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Fig. 15. Reconstruction of trajectories from samples of two wood images, with
maximum curvatureκmax = 0.009 (top row) andκmax = 0.018 (bottom row).
The reconstruction accuracy is: errtrajectory = 8.65pixels, errsamples =
12.87 dB (top); errtrajectory = 10.46 pixels, errsamples = 16.27 dB (bot-
tom). Image size: 768× 1152.

Fig. 16. Reconstruction of trajectories from samples of two parts of
wood boarding, with maximum curvature κmax = 0.013 (top row) and
κmax = 0.026 (bottom row). The reconstruction accuracy is: errtrajectory =
9.49pixels, errsamples = 11.05 dB (top); errtrajectory = 12.79 pixels,
errsamples = 12.00 dB (bottom). Image size: 683× 1024.

of inferring geometry from one-dimensional samples. We use
T = 28 so that the “safe” maximum trajectory curvature is
κmax = 0.018. We also obtain ωg = 0.243, γ0 = 0.37 and λ̂ =
1.44 < 0.5ωgT = 3.4 through the rotation pattern as described
in Sec. II-C. As expected, a trajectory with smaller curvature
κmax = 0.009 in Fig. 15 (top row), leads to a smaller reconstruc-
tion error than a larger curvature κmax = 0.015 (bottom row).

Real directional images with denser repetitions (i.e. larger
ωg) give rise to trajectory retrievals of more complex ge-
ometry (i.e., larger κmax), as seen in Fig. 16. Here, we use
less samples (T = 18) in each trajectory segment, allowing a
larger curvature κmax = 0.028. From a rotation experiment, we
find ωg = 0.612, γ0 = 0.06 and λ̂ = 3.23 < 0.5ωgT = 5.51.
As expected, a trajectory with smaller curvature κmax = 0.013
(top row), leads to a smaller reconstruction error than a larger
curvature κmax = 0.026 (bottom row), which is slightly above
the “safe” curvature limit.

Fig. 17. Reconstruction of a trajectory from samples of a rainbow build-
ing, with maximum curvature κmax = 0.008. The reconstruction accuracy
is: errtrajectory = 17.37pixels, errsamples = 12.90 dB. Image size: 2688×
2160.

Fig. 18. Reconstruction of a trajectory from samples of another rainbow build-
ing, with maximum curvature κmax = 0.009. The reconstruction accuracy is:
errtrajectory = 8.47pixels, errsamples = 9.14 dB. Image size: 2850× 2960.

For less laminar images as shown in Figs. 17, and 18, a smaller
ωg implies a smaller curvature for a given segment length. In
Fig. 17 where T = 25, the “safe” maximum trajectory curva-
ture is 0.02, larger than the one shown here (κmax = 0.008).
From a rotation experiment, we find ωg = 0.368, γ0 = 0.15

and λ̂ = 4.30 < 0.5ωgT = 4.60. In Fig. 18 where T = 20, the
“safe” maximum trajectory curvature is 0.025, larger than the
one shown here (κmax = 0.009). From a rotation experiment, we
findωg = 0.502, γ0 = 0.10 and λ̂ = 4.73 < 0.5ωgT = 5.02. It
can be seen that the trajectories can all be accurately retrieved
despite the fact that these images are not truly laminar.

Finally, we apply the algorithm to a grass image which is
only approximately laminar (see Fig. 19)—a more challenging
example. We sample this image along the same trajectory at two
different locations: the first one (red curve) significantly more
directional than the second one (blue curve). The difference in
the accuracy of the frequency estimation leads to an obvious
failure in the least directional case.

Notice that the laminar approximation of the image is less ac-
curate compared to the trajectory reconstruction. This is mainly
because these real images are not strictly laminar: there are actual
pixel variations along the laminar direction in Figs. 15, 16, 17,
and 18, although the hidden directionality contained within the
1D samples still makes it possible to retrieve the geometry of
both the image and trajectory. 0

0The figure in Fig. 17 is selected from the photo gallery of photographer
chakmkit: https://www.instagram.com/_chakmkit/; The building in Fig. 18 is
the SLS Brickell Hotel & Residences in Miami (selected on Google Image:
https://www.google.com/imghp?hl=en).
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Fig. 19. Reconstruction of the same trajectory at two locations in a grass
image. In contrast to the reasonably accurate curve reconstruction on the left, a
less directional image patch (right) results in a less reliable frequency estimation
as exemplified by a local rotation test, hence a failed trajectory reconstruction.

V. DISCUSSION AND FUTURE WORK

The goal of this paper was to demonstrate that the geometry of
the sampling scheme is, at least partially, embedded within the
1D samples of an image that has some directionality. Simplifying
our earlier approach [14], we have shown how to access this
geometric information by fitting the samples locally with a
single sinusoid, whose frequency is identified as the “slope” of
the sampling trajectory. The visualization of this identification
is made easy by rotation experiments that demonstrate this
rotational continuity, when the image is sufficiently directional.

Unfortunately, using digital images with a fixed resolution
inherently limits the reach of our demonstration. Yet, we want
to outline that, in real-world applications, a mobile sensor moves
and samples the analog field directly: no interpolation of gridded
data is needed and so, no (grid-dependent) interpolation error
is corrupting the samples, despite the very high 2D equivalent
sampling resolution. Hence, our next focus will be to design a
mobile sensing experiment and demontrate that the geometry of
the trajectory can be inferred from the 1D samples acquired.

Although the accuracy of the reconstructed trajectories is
good, the sample matching metrics indicates that, even in con-
trolled (synthetic) cases, the laminar image approximation is not
very accurate. This clearly calls for a higher quality algorithm
than the simple approach proposed in Section III-E, which would
also provide an accurate way to check the “laminarity” of the
1D samples.

It may seem that the laminar image hypothesis is very restric-
tive. However, it is possible to relax it by fitting the samples
with more than one sinusoid (see [14]), or by looking for several
local maxima of the single sinusoid fitting algorithm. These
approaches can be made more robust by acquiring samples from
more than one sensor, attached to the same mobile device.

One of our most speculative goals, is to apply this new type of
1D to 2D reconstruction as a visualization tool for non-geometric
1D signals like speech, music, EEG, seismograms etc. Although
these signals are not known to be obtained from the samples of

an image, making as if they were provides a new geometric
representation, in which geometric clues could be exploited in
applications like classification or recognition.

APPENDIX

A. Windowed Sinusoidal Fitting

Consider a signal s(t) that can be expressed as s(t) =

Re
{
c0e

jω0t
}
+ s1(t) where s1(t) =

∑K
k=1 cke

jωkt, c0 ∈ C

and ω0 > 0. Given a window wT (t) which we choose according
to (4), minimizing the fitting criterion

J(ω) = inf
A∈C

∫
wT (t)

∣∣s(t)−Aejωt
∣∣2dt

over ω ∈ R is equivalent to maximizing |As(ω)|, where

As(ω) =

∫
wT (t)s(t)e

−jωtdt.

Lemma 1: Assume that we have found two constants C and
ε that satisfy the inequalities

C ≥ sup
ω∈R

∣∣As1(ω)
∣∣ and ε ≥ ∣∣As1(±ω0)

∣∣,
from which we define

Q =
C + ε

|c0| + 2e−T 2ω2
0 .

If Q < 1, then the minimization of J(ω) over ω ∈ R results in
a frequency ω̂ which is such that

∣∣|ω̂| − |ω0|
∣∣ ≤ √− log(1−Q)

T︸ ︷︷ ︸
=δω

.

Proof: Without loss of generality, assume that ω0 ≥ 0. The
choice of wT (t) is equivalent to ŵT (ω) = e−T 2ω2

, which leads
to

As(ω) = c0ŵT (ω − ω0) + c∗0ŵT (ω + ω0) +As1(ω).

Obviously, we have that |As(±ω0)| ≤ |As(ω̂)|. Hence, given
a positive number h, if we can prove that, for all ω that satisfy∣∣|ω| − ω0

∣∣ > h we have |As(ω)| < |As(±ω0)|, then this also
proves that

∣∣|ω̂| − ω0

∣∣ ≤ h. To this end, we need the following
inequalities that are valid for all ω such that

∣∣|ω| − ω0

∣∣ > h
� Lower bound of the maximum:

|As(±ω0)| ≥ |c0ŵT (0) + c∗0ŵT (2ω0)| − |As1(±ω0)|
≥ |c0|

(
ŵT (0)− ŵT (2ω0)

)− ε
≥ |c0|

(
1− ŵT (ω0)

)− ε
� Upper bound of the non-maximum:

|As(ω)| ≤ |c0|
(
ŵT (ω−ω0) + ŵT (ω+ω0)

)
+|As1(ω)|

≤ |c0|
(
ŵT (|ω| − ω0) + ŵT (|ω|+ ω0)

)
+ C

≤ |c0|
(
ŵT

(∣∣|ω| − ω0

∣∣)+ ŵT (ω0)
)
+ C

< |c0|
(
ŵT (h) + ŵT (ω0)

)
+ C

Both inequalities are proven using the triangular inequality
and the monotonous decrease of ŵT (ω) when ω ≥ 0. We can
thus state that, if h is chosen such that

|c0|
(
ŵT (h) + ŵT (ω0)

)
+ C = |c0|

(
1− ŵT (ω0)

)− ε
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then, for all ω such that
∣∣|ω| − ω0

∣∣ > h, we have |As(ω)| <
|As(±ω0)|. As argued previously, this ensures that

∣∣|ω̂| − ω0

∣∣ ≤
h, a result that it is straightforward to generalize to ω0 < 0. Of
course, the value of h that satisfies this equation is identical to
δω, given the expression of ŵT (ω). �

B. Upper Bound of a Sum of Gaussians

Lemma 2: We are given an increasing real sequence xk, k ∈
Z. Denoting byΔ = infk |xk+1 − xk| their minimal separation,
we have ∑

k∈Z

e−(x−xk)
2 ≤ 1 +

e−Δ2/4

1− e−3Δ2/4
, (15)

for all x ∈ R.
Proof: Denote byf(x) the function on the lhs of (15). Assume

that its maximum is attained at x ∈ [x0, (x0 + x1)/2] then
� when k ≥ 1, we find that xk − x ≥ Δ/2 + (k − 1)Δ and

so, exp
(−(x− xk)

2
) ≤ exp

(−(k − 1/2)2Δ2
)
;

� when k ≤ −1, we find that x− xk ≥ |k|Δ and so,
exp

(−(x− xk)
2
) ≤ exp

(−k2Δ2
)
.

Hence, if the maximum of f(x) is attained at x ∈ [x0, (x0 +
x1)/2] we can bound this maximum by

f(x) ≤ 1 +
∑
k≤−1

e−k2Δ2

+
∑
k≥1

e−(k−1/2)2Δ2

=
∑
k≥0

e−k2Δ2/4.

For symmetry reasons (consider f(−x)), this bound is also valid
if the maximum of f(x) is attained at x ∈ [(x0 + x−1)/2, x0]
instead. Of course, we would also find the same bound if
the maximum of f(x) were attained in the interval [(xk +
xk−1)/2, (xk + xk+1)/2], which shows its generality.

Using the inequalityk2 ≥ 3k − 2 fork ≥ 1 allows to simplify
this infinite summation:∑

k≥0

e−k2Δ2/4 ≤ 1 +
∑
k≥1

e−(3k−2)Δ2/4

≤ 1 + e−Δ2/4
∑
k≥0

e−3kΔ2/4

≤ 1 +
e−Δ2/4

1− e−3Δ2/4
.

�

C. Proof of Theorem 2

Proof: Along the straight line defined by r(t) = ta+ b, the
samples s(t) = I

(
r(t)

)
take the form

s(t) = Re
{
c0 exp(jω

T
0b) exp(jω

T
0at)

}︸ ︷︷ ︸
Re{c′0ejω0t}

+

K∑
k=1

ck exp(jω
T
kb) exp(jω

T
kat)︸ ︷︷ ︸

c′ke
jωkt︸ ︷︷ ︸

=s1(t)

.

The proof is then a direct application of Lemma 1, for which we
have to find the bounds C and ε. Given the expression of s1(t)
as a sum of complex exponentials, we have to majorize

∣∣∣∣+∞∑
k=1

c′ke
−T 2(ω−ωk)

2

∣∣∣∣ ≤ sup
k≥1

|c′k|
+∞∑
k=1

e−T 2(ω−ωk)
2

≤ sup
k≥1

|c′k|
(
1 +

e−T 2Δ2
1/4

1− e−3T 2Δ2
1/4

)
= C (Lemma 2)

and

∣∣∣∣+∞∑
k=1

c′ke
−T 2(±ω0−ωk)

2

∣∣∣∣ ≤ sup
k≥1

|c′k|
+∞∑
k=1

e−T 2(±ω0−ωk)
2

≤ sup
k≥1

|c′k|
+∞∑
k=1

2e−k2T 2Δ2
0

≤ sup
k≥1

|c′k|
2e−T 2Δ2

0

1− e−3T 2Δ2
0

= ε

where Δ0 = infk≥1

(|ωk − ω0|, |ωk + ω0|
)

and Δ1 =

infk �=k′≥1

∣∣ωk − ωk′
∣∣. Given that supk≥1 |c′k| = supk≥1 |ck|, the

statement of the Theorem follows from Lemma 1. �

D. Proof of Corollary 2

Proof: This is a direct application of Theorem 2, because
we have infk≥1

(|(ωk − ω0)
Ta|, |(ωk + ω0)

Ta|) = Δ0ωg|uTa|
and infk �=k′≥1 |(ωk − ωk′)Ta| = Δ1ωg|uTa|. Then, the factor
Q involved in Theorem 2 is identical to Q(ωgTu

Ta) here.
We need to find for which values of λ ≥ 0we haveQ(λ) < 1.

We notice that Q(λ) is continuous and decreases monotonously
from+∞ to 1− γ0 when λ increases from 0 to+∞. Given that,
by hypothesis, 1− γ0 < 1, there exists a unique value λ̂ > 0 for
which Q(λ̂) = 1.

A lower bound on λ̂ can be found by analyzing the dominant
terms in the expression Q(λ):

1) (1− γ0) + 2e−
ˆλ
2

< 1, which directly leads to λ̂ >√− log γ0.

2) (1− γ0)(1 + e
−Δ2

1

ˆλ
2

/4

1− e
−3Δ2

1

ˆλ
2

/4

) < 1, which shows that

e−Δ2
1
ˆλ
2

/4 < γ1, if we denote by γ1 the unique real
solution of the cubic equation

γ3
1 +

1− γ0
γ0

γ1 − 1 = 0.

Equivalently, we have λ̂ > 2Δ−1
1

√− log γ1 where the
root γ1 is found using Cardano-Tartaglia’s formula [18].

3) (1− γ0)(1 +
2e

−Δ2
0

ˆλ
2

1−e
−3Δ2

0

ˆλ
2 ) < 1, which shows that e−Δ2

0
ˆλ
2

< γ2, if we denote by γ2 the unique real solution of the
cubic equation

γ3
2 +

2(1− γ0)

γ0
γ2 − 1 = 0.

Equivalently, we have λ̂ > Δ−1
0

√− log γ2 where the root
γ2 is found using Cardano-Tartaglia’s formula.

Hence, we find that λ̂ is lower bounded by the maximum of
these three values, as stated in the Corollary Empirically, this
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bound is close to the true value when one of the three terms
(typically, the one derived from γ1) is dominant. �
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