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Abstract—Parametric sampling of complex exponentials is a
problem widely studied in harmonic analysis and it has wide
applications in radar, communications, near-far and other fields.
One of the approaches to estimating complex exponentials is
Prony’s method which allows estimation of K exponentials from
2K samples. In practice during digital acquisition using Shannon’s
framework, the amplitude is bounded by the dynamic range of
the ADC. This is overcome by the Unlimited Sensing Framework.
In this paper, we propose an approach that mimics Prony’s
method and can estimate the parameters of complex exponentials
without any sampling rate requirements from 6K samples. This
strategy uses multi-channel USF architecture that can implement
either real-valued or complex-valued thresholds based on Gaussian
integers. Lastly, we present the effect of quantization noise on
the performance of both estimation strategies, and calculate the
Effective Number of Bits and show that four quantization bits are
sufficient for sub-Nyquist frequency estimation.

Index Terms—USF, Sub-Nyquist Spectral Estimation, Quantiza-
tion

I. INTRODUCTION

Frequency or spectral estimation plays a key role in signal
processing [1], [2], finding applications in radar systems, digital
communications, time-of-flight imaging, and the near-far problem.
Its origins can be traced back to the 18th century with Prony’s
method, which facilitates the estimation of K frequencies
from 2K samples, given a sufficiently small sampling step.
However, Analog-to-Digital Converters (ADCs) adhering to
the Shannon-Nyquist Framework set limits on the sampling
rate. These limits pose challenges in higher frequency bands,
necessitating the adoption of sub-Nyquist frequency estimation.
These methods can be broadly classified into two groups: (i)
stochastic methods, which use coprime samplers and statistical
recovery techniques [3], [4]; and (ii) deterministic methods,
based on the Chinese Remainder Theorem (CRT) and Robust
CRT (RCRT) [5]. These techniques share a foundational reliance
on model assumptions and the principle of pointwise sampling
as prescribed by the Shannon-Nyquist framework. However,
in practice, ADCs are limited by constraints such as limited
dynamic range (DR) and digital resolution (DRes)—stemming
from a fixed bit budget and quantization—pose significant
challenges, resulting in permanent loss of information.
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To overcome these fundamental limitations in DR and DRes,
the Unlimited Sensing Framework (USF) has been recently
introduced [6] as an alternative method. The USF adopts a
radically different approach to sampling theory, basing itself
on a synergistic co-design of hardware and software. By
integrating modulo folding into the analog hardware, it avoids
clipping and saturation, thus achieving a higher digital resolution
within a specified bit budget. Subsequently, specialized recovery
algorithms are developed to effectively invert the folded samples,
enabling High Dynamic Range (HDR) signal reconstruction.

Given the recency of the USF, much of the research in
sampling theory has centered on bandlimited signal classes
[7]–[10]. While prior works have explored time domain and
frequency domain sparse signals [11]–[14], their scope has been
confined mainly to single-channel architectures. This approach
necessitates oversampling for inversion of modulo folding, which
contradicts the sub-Nyquist ethos of spectral estimation problem.

Multi-channel USF (MC-USF) [15]–[18] utilizing irrational
ratio of modulo thresholds for CRT-based recovery have recently
emerged, particularly for bandlimited signals [15], [16]. However,
these works do not extend to sub-Nyquist frequency estimation.
Our research builds upon ongoing efforts [19] to formulate
a deterministic strategy for sub-Nyquist frequency estimation
within the USF architecture, also using irrational threshold ratios.
While the work in [19] incorporates hardware validation, it does
not address the analysis of quantization noise.

Contributions. The current paper makes the following
contributions: (C1) A new MC-USF acquisition architecture that
allows for sub-Nyquist frequency estimation is presented, (C2) A
new recovery algorithm for sub-Nyquist frequency estimation is
proposed, and (C3) Analysis of the effect of the quantization
noise on the robustness of the recovery algorithm is considered.

Notation. The set of integer, real, and complex-valued numbers
are denoted by Z,R, and C, respectively. The set of N integers
is given by IN = {0, · · · , N − 1}, N ∈ Z+. The conjugate
of z ∈ C is denoted by z∗. Continuous function and its
discrete counterpart are written as g (t) , t ∈ R and g [n] , n ∈ Z,
respectively. ℜ(z) denotes the real part of a complex number
and ℑ(z) stands for the imaginary part. The greatest common
divisor of p, q ∈ Z is denoted as GCD (p, q) and the least
common multiple is denoted as LCM (p, q). Gaussian integer
(GI) is defined as τ (p, q) = p+ ȷq, p, q ∈ Z. The max-norm
of a function is defined as, ∥g∥∞ = inf{c0 ⩾ 0 : |g (t)| ⩽ c0};
for sequences, we use, ∥g∥∞ = maxn |g [n]|. The zero-centred
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Fig. 1. USF acquisition architecture with Gaussian integer thresholds that
allows sub-Nyquist frequency estimation.

modulo operator is defined as

Mλ : g 7→ 2λ

(s
g

2λ
+

(1 + ȷ)

2

{
− (1 + ȷ)

2

)
, λ ∈ C (1)

where JgK def
= g− (⌊ℜ(g)⌋+ ȷ⌊ℑ(g)⌋) and ⌊·⌋ denotes the floor

operation. The quantization operator is defined as Q(g) =⌊
g + 1

2

⌋
, g ∈ R. The mean-square error (MSE) between x,y ∈

RN is denoted as E2(x,y)
def
= 1

N

∑N−1
n=0 |x [n]− y [n]|2.

II. SUB-NYQUIST USF SPECTRAL ESTIMATION

In order to invoke the true flavour of sub-Nyquist USF, we
propose a novel sampling architecture utilizing Gaussian-integers
that results in an exact spectral estimation from as few as 6K
folded samples. Before we state the sampling theorem, we first
present the problem formulation and notations needed.
Problem Formulation. Let the input signal g(t) be a finite sum
of K complex exponentials,

g(t) =
∑K−1

k=0
cke

ȷωkt, ωk = 2πfk, (2)

where ck, ωk are the unknown amplitude and frequency of
interest, respectively. We assume a real-valued input g(t)
that matches the practical scenarios. The proposed MC-USF
architecture is concretely depicted in Fig. 1.

Let λ = ϵτ(p, q) = 2ρe−ȷθ be a scaled GI, where ϵ ∈ R+.
The key feature of this sampling paradigm is that, 1) quadrature
sampling is utilized to implement the complex-valued modulo
operation, and 2) the continuous-time signal is first folded
via non-linear modulo operation, and then sampled in a
pointwise fashion, resulting in a low-dynamic-range (LDR)
folded measurements which can be characterized as[

v0 [n] v1 [n]

v2 [n] v3 [n]

]
= Mρ

([
g [n]

gTd
[n]

] [
cos θ sin θ

])
(3)

where g[n] = g (nT ), gTd
[n] = g (nT + Td) and Td is the time

delay, T = 1/fs is the sampling step and fs ≪ fmax, fmax =
∥fk∥∞. That said, the measurements {vl [n]}l∈I4

n∈INl
are folded in

both amplitude and frequency domain. Given the multi-channel
measurements {vl [n]}l∈I4

n∈INl
, our goal is to design a theoretically

guaranteed recovery approach that retrieves the signal parameters
{ck, fk}k∈IK .

CRT-based Sub-Nyquist USF Spectral Estimation. The
concurrent modulo non-linearity cannot be inverted via techniques
inherently designed for single-channel modulo samples, such
as non-linear filtering of amplitudes [6] or by Fourier-domain
separation proposed in [7], since each channel measurement
is undersampled. Nonetheless, common to the idea in [17],
[19], the channel redundancy across {vl [n]}l∈I4

n∈INl
allows for

amplitude unfolding via CRT under appropriate choice on λ.
The key insight being that {v0 [n]}n∈IN0

and {v1 [n]}n∈IN1

({v2 [n]}n∈IN2
and {v3 [n]}n∈IN3

) share the same input signal
g(t) (g(t + Td)) that is quadrature sampled (see (3)), its
combination results in the system of congruence equations, i.e.,{

g[n] = ϵ (θ0 [n] + ȷθ1 [n]) (p+ ȷq) + r0 [n]

g[n] = ϵ (ϕ0 [n] + ȷϕ1 [n]) (p− ȷq) + r1 [n]
, (4)

where {θl[n], ϕl[n]} ∈ Z2, n ∈ INl
, l ∈ I2, and r0[n] =

r∗1 [n] = (v0[n] + ȷv1[n])e
−ȷθ. Notice that, GCD (p, q) = 1.

Hence, {v0[n]}n∈IN0
and {v1[n]}n∈IN1

provide for {g[n]}n∈IN
due to the GI structure, viz. λ = ϵ(p + ȷq). This allows for
amplitude unfolding that is independent of any sampling rate
requirement, provided that ∥g (t)∥∞ < ϵp

2+q2

2 .
Our main result is summarized as follows.

Theorem 1. Let g (t) =
∑K−1

k=0 cke
ȷωkt. Given multi-channel

modulo samples {vl [n]}l∈I4
n∈INl

defined in (3). Then, g (t) can
be exactly recovered with Nl ⩾

(
2−

⌊
l
2

⌋)
K, l ∈ I4 samples if

GCD (p, q) = 1, Td ⩽ π
maxk |ωk| and ∥g (t)∥∞ < ϵp

2+q2

2 .

Proof. Our proof is constructive and decouples the concurrent
inversions of amplitude and frequency folding.
Amplitude Unfolding. We first unfold the amplitude utilizing
the CRT [20]. From (3) and sampling architecture, we can write
down the following linear congruence equations as,

ϵ


p −q 0 0

q p 0 0

0 0 p q

0 0 −q p



θ0

θ1

ϕ0

ϕ1

+


ℜ (r0 [n])

ℑ (r0 [n])

ℜ (r1 [n])

ℑ (r1 [n])

 =


ℜ (g[n])

ℑ (g[n])

ℜ [g[n]]

ℑ (g[n])

 . (5)

Given the integer constraints on {θl[n], ϕl[n]} ∈ Z2, n ∈ INl

and ∥g (t)∥∞ < ϵ(p2 + q2)/2, then {θl[n], ϕl[n]}, n ∈ INl
can

be uniquely determined using exhaustive search.
Frequency Unfolding. Let νk = Mfs/2 (fk) be the aliased
frequency of fk. Then, the samples can be written as,{

g[n] =
∑K−1

k=0 cke
ȷ2π

νk
fs

n

gTd
[n] =

∑K−1
k=0 cke

ȷ2πfkTdeȷ2π
νk
fs

n
. (6)

The common frequency components of g[n] and gTd
[n] can

be estimated using Prony’s method as follows. Let h[n]
be a filter with z-transform h (z) =

∑K
n=0 h[n]z

−n =∏K−1
k=0

(
1− ukz

−1
)

denote the z-transform where its roots
are uk = eȷ2πνk/fs . The filter h [n] annihilates g[n] such
that (g ∗ h) [n] =

∑K−1
k=0 cku

n
k

∑K
m=0 h [m]u−m

k = 0,K ⩽
n ⩽ N − 1. This can be algebraically rewritten in the matrix
form as T (g)h = 0, where T (g) is a (N −K) × (K + 1)
Toeplitz matrix constructed by {g[n]}n∈IN . To solve these
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linear equations, there should be at least as many equations
as unknowns, i.e., N ⩾ 2K. This leads to the condition,
N0, N1 ⩾ 2K. Amplitudes ck can be found using the least
squares (LS) method. Anti-aliased frequencies fk can be
estimated from the phase term eȷ2πfkTd by utilizing LS method
from (6), resulting in N2, N3 ⩾ K since {νk}k∈IK is common
to all channels. This completes the proof of the theorem.

Compared to [15], [19], we have the following results:

Remark 1. The design of multi-channel sampling architecture
allows for a reduction of the number of ADCs by half compared
to [15] for real-valued input.

Remark 2. In contrast to [19], the architecture proposed in
Fig. 1 operates directly in the sample domain, and therefore 1) it
can estimate DC value, and 2) and requires only 6K samples
in total smaller than 6K + 4 samples in [19].

III. SUB-NYQUIST USF IN PRACTICE

Theorem 1 in Section II provides solutions for spectral
estimation via sub-Nyquist Unlimited Sampling Framework.
However, signal recovery with a theoretical guarantee in the
presence of bounded noise has not been pursued, which is
particularly critical in real-world scenarios as quantization
induces bounded error. This may compromise the HDR capability
of the sub-Nyquist USF method stated in Section II, necessitating
a more robust sampling architecture and recovery approach.
Robust Multi-Channel Sub-Nyquist USF. Let g(t) be a sum of
K complex exponentials which is real-valued. The multi-channel
sampling architecture illustrated in Fig. 2 implements real-valued
modulo thresholds. The thresholds βl = ϵcl/2, l = 0, 1 are
scaled integers, where GCD (c0, c1) = 1, c0, c1 ∈ Z+ and ϵ ∈
R+. The new architecture is more robust to noise, which gives
rise to the multi-channel folded measurements given by{

u0[n] = Mβ0 (g[n]) u1[n] = Mβ1 (g[n])

u2[n] = Mβ0 (gTd
[n]) u3[n] = Mβ1 (gTd

[n])
. (7)

In the presence of bounded noise ηl[n], given noisy folded
measurements ul[n] = ul[n] + ηl[n], n ∈ INl

, l ∈ I4. Our goal
again is to retrieve the 2K unknowns {ck, fk}K−1

k=0 .
RCRT-based Sub-Nyquist USF Spectral Estimation. RCRT
can be used to determine the modular multiplicative inverse,
which provides theoretical guarantee against bounded noise.
Given the same specification, however, the performance bounds
provided by the new architecture Fig. 2 is

√
2× higher compared

to the previous sampling scheme as shown in Corollary 2. This
can result in one quantization bit difference. We follow the same
decoupling and unfolding strategy described in Section II, the
input signals are pairwise common to all channels, for which
their combinations lead to a system of congruence equations,

g[n] = 2β0a0 [n] + u0[n], g[n] = 2β1a1 [n] + u1[n] (8)

where {a0 [n] , a1 [n]}n∈IN ∈ Z2, while the frequency unfolding
is the same as what has been presented in Theorem 1.

Based on the result above, we have the following theorem:

Fig. 2. USF acquisition architecture with real-valued thresholds that allows
sub-Nyquist frequency estimation.

Theorem 2. Let g (t) =
∑K−1

k=0 cke
ȷωkt. Given noisy modulo

measurements {ul}l∈I4
n∈INi

, then, the reconstruction g̃[n] of g[n]
can be achieved with Ni ⩾

(
2−

⌊
i
2

⌋)
K, i ∈ I4 samples up to

an error bounded by ∥g − g̃∥∞ < ∥ηl∥∞ = ϵ/4, provided that
Td ⩽ π

maxk |ωk| and ∥g (t)∥∞ < ϵLCM (c0, c1) /2.

Proof. Similar to the strategy in Section II, we sequentially
perform unfolding in amplitude and frequency domain.
Amplitude Unfolding. The key idea of robust signal recovery
is that, the modular multiplicative inverse estimation is exact
due to the integer constraints, provided that the noise is upper
bounded. Namely, Q(Γ + ε) = Q(Γ),Γ ∈ Z if |ε| < 1/2.
More specifically, re-organizing the congruence equations from
the sampling architecture in Fig. 2 leads to [21],

Q
(
(u1[n]− u0[n])/ϵ

)
= c0a0 [n]− c1a1 [n] (9)

where {a0[n], a1[n]} ∈ Z2 can be determined via exhaustive
search, provided that ∥g (t)∥∞ < ϵLCM (c0, c1) /2, c0, c1 ∈ Z+.
This implies that ∥ηl∥∞ < ϵ/4, l ∈ I2. As for the frequency
unfolding, we utilize the same strategy stated in Section II.

In practice, this give rise to performance bounds of sub-Nyquist
USF spectral estimation in the presence of quantization error.
Taking a step further, we reveal the interplay between the bit
budget, error bounds and dynamic range gain:

Corollary 1. Let g (t) =
∑K−1

k=0 cke
ȷωkt. Given quantized

modulo measurements {ul[n]}l∈I4
n∈INl

, then, the reconstruction
g̃[n] of g[n] can be achieved with 4K samples up to an error
upper bounded by ∥g − g̃∥∞ < ϵc/2B+1, provided that Td ⩽

π
maxk |ωk| , ∥g (t)∥∞ < ϵLCM (c0, c1) /2 and

B > log2 (c) + 1 (10)

where B ∈ Z+ is the quantization bit budget and c
def
= ∥ck∥∞.

Proof. The corollary holds as long as the quantization step,
2βmax/2

B where βmax = ∥βk∥∞, is smaller than the critical
threshold ϵ/2, resulting in the inequality in (10).

We compare the robustness of schemes in Fig. 1 and Fig. 2:

Corollary 2. Let g (t) =
∑K−1

k=0 cke
ȷωkt. Given quantized

modulo measurements {vl[n] = vl[n] + ζl[n]}l∈I4
n∈INl

, where
ζl [n] is bounded noise, then, the reconstruction g̃[n] of g[n]
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Algorithm 1 USF Sub-Nyquist Frequency Estimation.

Input: {ui [n]}i∈I4
n∈INi

for β ∈ R

1: Unfold g[n] and gTd
[n] based on (8).

2: Calculate aliased frequencies νk using (6).
3: Use least squares to obtain estimates of ck.
4: Use least squares to find the phase term eȷ2πfkTd of (6).

Output: Signal parameters {fk, ck}K−1
k=0 .

TABLE I
USF SUB-NYQUIST SAMPLING SIMULATION

Complex-valued threshold
Exp. No. N fs Td ϵ ρ ||g||∞ fk MSE(fk , f̂k)

(Hz) (µs) (Hz)
1 29 1 1 0.01 0.361 26 [100.09, 142.30, 172.15] 6.73× 10−29

2 29 1 1 0.01 0.361 26 [1206.30, 1224.64, 1870.98] 6.89× 10−26

3 29 1 1 0.01 0.361 26 [10102.11, 14956.64, 15018.73] 4.41× 10−24

Robust Multi-Channel Sub-Nyquist USF

Exp. No. N fs Td λ1 λ2 ||g||∞ fk MSE(fk , f̂k)
(Hz) (µs) (Hz)

1 29 1 1 0.310 0.315 19 [100.09, 142.30, 172.15] 6.73× 10−29

2 29 1 1 0.310 0.315 19 [1206.30, 1224.64, 1870.98] 1.72× 10−26

3 29 1 1 0.310 0.315 19 [10102.11, 14956.64, 15018.73] 1.10× 10−24

can be achieved with 4K samples up to an error bounded
by ∥g − g̃∥∞ < 2

√
2ρ/2B+1, provided that Td ⩽ π

maxk |ωk| ,
∥g (t)∥∞ < ϵ

√
p2 + q2/2 and

B > log2

(√
p2 + q2

)
+ 1.5. (11)

Given a fixed signal dynamic range, i.e., ∥g(t)∥∞ = const,
Corollary 2 reveals that the sampling architecture in Fig. 2
requires fewer bits. This leads to a more robust signal recovery in
practice when the bit budget is limited due to power constraints.

Recovery Approach. The proposed reconstruction method,
outlined in Algorithm 1, involves two phases: amplitude
unfolding and frequency unfolding. This study introduces
two USF architectures based on different types of modulo
thresholds. The first architecture utilizes complex-valued
thresholds, benefiting from the use of modulo ADCs with
identical thresholds. In contrast, the architecture with real-valued
thresholds employs varying modulo thresholds, offering greater
resilience to quantization noise.

IV. NUMERICAL EXPERIMENTS

We perform numerical experiments to validate the performance
of two approaches mentioned above in both noiseless and noisy
conditions. We tabulate the experimental parameters and results
in Table I. In noiseless scenarios, we can achieve signal recovery
up to machine precision and dynamic range gains up to 72×
(Fig. 1) and 60× (Fig. 2).

In the presence of quantization, we conduct experiments under
different quantization bits, ranging from 4 bits to 12 bits, to
assess the frequency estimation, as shown in Fig. 3 and Fig. 4.
Each dot (“•”) represents one estimate (from the total of ten
trials for each bit-budget). The input signal consists of three
real-valued sinusoids. For each trial, the ratio of amplitudes
was changed ensuring ∥g∥∞ remains fixed. We show that a
sufficiently accurate frequency estimation can be achieved from
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Fig. 3. Sub-Nyquist Sampling with complex-valued thresholds – p = 5, q = 2,
ϵ = 1, ρ = 2.693, fs = 1Hz, Td = 1/6000s, and ||g||∞ = 14.45
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Fig. 4. Sub-Nyquist Sampling with real-valued thresholds – λ1 = 3, λ2 = 3.5,
ϵ = 1, fs = 1Hz, Td = 1/6000s and ||g||∞ = 20.95.

TABLE II
ENOB PER CHANNEL

Complex-valued threshold Real-valued threshold
Quant.

bits
ENOB

v0 v1 v2 v3 u0 u1 u2 u3

4 3.674 3.647 3.727 3.736 3.732 3.684 3.676 3.636

5 4.716 4.703 4.695 4.720 4.782 4.661 4.703 4.607

6 5.748 5.776 5.669 5.739 5.852 5.679 5.679 5.602

7 6.766 6.682 6.718 6.714 6.765 6.642 6.664 6.652

8 7.722 7.766 7.718 7.722 7.744 7.633 7.721 7.628

12 11.724 11.724 11.726 11.751 11.768 11.714 11.727 11.600

as few as 4-bit quantization and 6× DR improvement. We
calculate the Effective Number of Bits (ENOB) [22]

ENOB =
SINAD − 1.76

6.02
, SINAD = 10 log10

(
Ps + Pn

Pn

)
where Ps and Pn are the signal and noise power, respectively.
We document the results in Table II, showcasing the robustness
of the proposed sub-Nyquist USF method against bounded noise.

V. CONCLUSION

In this paper, we propose a novel multi-channel USF pipeline
that allows for exact frequency estimation without any sampling
rate requirement. We introduce two sampling architectures and
derive the performance bounds in the presence of bounded
noise (e.g. quantization noise). Numerical validation of our
approaches agrees with the theoretical advantages deduced from
our analysis. Practical implementation of the sampling strategy,
as well as recovery algorithms in an efficient fashion, remains
an interesting future pursuit.
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