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Abstract—Recovering multiband spectra from sub-Nyquist sampling is
a prominent research area in signal processing, driven by its wide range
of applications and the technical challenges it presents. These challenges
demand novel algorithmic approaches tailored to specific scenarios.
The problem becomes even more complex when spectral locations are
unknown, leading to the development of Blind Multi-Band Sampling
techniques. Despite several proposed solutions, a notable research gap
persists. Signals with varying energies across different spectral bands
often exhibit high-dynamic-range (HDR) features, and with a fixed bit
budget, there is a trade-off between optimizing digital resolution and
spanning HDR. In this paper, we address this challenge by leveraging the
Unlimited Sensing Framework (USF). The interaction between modulo
non-linearity and sub-Nyquist sampling induces aliasing in both the
domain and range of the signal, further complicating the recovery process,
especially with unknown spectral locations. To tackle these challenges,
we propose a novel algorithm for blind multiband spectrum recovery
from folded samples at sub-Nyquist rates. Importantly, we provide a
theoretically guaranteed, perfect recovery at sub-Nyquist sampling rates.
Our proof is constructive and leads to an efficient algorithm supported by
a novel multi-channel sampling architecture. We validate our approach
through numerical experiments, opening up new directions in theory,
algorithms, and real-world applications for the field.

Index Terms—Blind spectrum sensing, multiband, nonuniform periodic
sampling, sub-Nyquist sampling, unlimited sampling.

1. Introduction

Digitization and Nyquist Rate. The well-known Shannon-Nyquist
framework lays the foundation for the conventional digital acquisition
protocol, which catalyzed the so-called “digital revolution”. The
Shannon sampling theorem links continuous-time, bandlimited signal
with discrete representation utilizing its amplitude samples taken at
or above the Nyquist rate. This allows a perfect reconstruction and
signal processing in a digital framework. This constitutes the current
Shannon sampling paradigm for which its practical implementation
leverages analog-to-digital convertors (ADCs).

Spectrum-Blind Multiband Recovery at Sub-Nyquist Rate. In this
paper, we consider the class of multiband signals, whose spectral
support resides within several continuous passbands, spread over a
wide spectrum. This model naturally arises when capturing a sum of
narrowband signals which are modulated by carriers with different,
high frequencies. Fig. 1 schematically depicts a typical spectral
support of a multiband signal, which is mathematically defined by
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¢ (t) is bandlimited with bandwidth 2Q. {wy}; ' are unknown
carrier frequencies satisfying ming |wx| > 2Q. Such kind of signals
are at the core of various applications, with examples ranging from
cognitive radio [1], RF communication [2], optical fiber communi-
cations [3] to orthogonal frequency-division multiplexing commu-
nications [4]. It is well-documented that the sampling rate and the
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Fig. 1: Typical spectrum support of a multiband signal f(t).

bit-budget for quantization dictate the sampling cost of the ADCs. As
multiband signals are intrinsically featured with high bandwidth, the
conventional Nyquist sampling thus becomes infeasible due to high
power consumption. This motivates the development of the so-called
sub-Nyquist sampling [2], [5]-[12].

Related Work. Current methods on sub-Nyquist multiband spectrum
sensing can be divided into the following two categories:

1) Known-Spectrum Techniques. Uniform sampling a real bandpass
signal at low-rate was considered in [13]. Lin and Vaidyanathan
utilized periodic non-uniform sampling approach to multiband
signals in [14]. These methods enable perfect recovery at rates
approaching that derived by Landau [15].

2) Blind-Spectrum Techniques. Reconstruction under partial knowl-
edge of the spectral support was studied in [8], [9], [16]. These
works use a multi-coset architecture and assume a certain mathe-
matical condition on band locations instead of requiring the exact
support. Herley and Wong [17] suggested a half-blind sampling
system. Similar ideas were later suggested in [7]. A spectrum-
blind method that ensures perfect reconstruction was reported
by Mishali and Eldar in [2]. This approach utilizes compressed
sensing tools and allow recovery with arbitrary band locations.

In essence, sub-Nyquist multiband recovery focuses on “unfolding”
of spectrum that is “aliased” in the Fourier domain.

Concurrent Unfolding along Amplitude and Spectrum. In another
incarnation, this unfolding problem is also at the heart of the
Unlimited Sensing Framework (USF) [18]-[21]. Different from sub-
Nyquist sampling, in the USF, folding is purposefully introduced
to achieve folding of amplitude, thus eliminating ADC clipping or
saturation. Increasing the dynamic range of ADCs may also avoid
this issue, but would inevitably result in poor digital resolution
due to quantization. In a nutshell, the conventional Shannon-Nyquist
framework encounters a fundamental trade-off between dynamic
range and digital resolution, which is overcome by the USF. In the
USF, on the hardware front, a modulo non-linearity of the form

g[S +3]-3) WE9-lo) @

where |g| = sup{k € Z|k < g} (floor function) is injected in
the analog domain, before performing pointwise sampling. The first
hardware prototype was shown in [21]. On the algorithm front, novel,
mathematically guaranteed, recovery algorithms are used to attain
the “inversion” of the .#\(-) operation, enabling recovery of HDR
signal from its low-dynamic-range (LDR), modulo samples [21], [22].
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USF fundamentally simultaneously achieve HDR and high digital
resolution, providing a performance breakthrough in 1) up to 25\
to 30\ [20] dynamic range improvement in the presence of non-
idealities, system noise and quantization; 2) 10-12 dB improvement
in the quantization noise floor over the conventional ADC, in the
context of radars [23] and tomography [24], and 3) higher-order mod-
ulation schemes in MIMO communications in [25], e.g. 1024 QAM.
USF essentially shares the same “unfolding” flavor as sub-Nyquist
multiband reconstruction, but the subtlety here is the distinction that
arises between spectrum and amplitude [10]-[12]. While sub-Nyquist
acquisition is our ultimate goal, we know that reconstruction methods
at the core of USF require oversampling [19], [20], [22]. Hence, sub-
Nyquist acquisition results in a fundamental contradiction instigating
a stalemate between analysis and synthesis, creating challenges for
multiband recovery from sub-Nyquist, folded samples.

Contributions. We have previously studied the sub-Nyquist USF for
bandpass signals [26] and sums of sinusoids [10]-[12], which are
special cases of multiband signal class. In this paper, we consider the
blind multiband reconstruction with sub-Nyquist, modulo samples.
The solution to this problem would directly translate to several
benefits since we can 1) reduce sampling cost due to sub-Nyquist rate
and low voltage ranges of modulo ADCs [25], 2) prevent saturation
or clipping arising from HDR input signals [21], and 3) achieve high
digital resolution with a given quantization bit-budget [23].
The key contributions of this work are as follows:

C1) We propose a novel sampling scheme that allow blind multiband

recovery from sub-Nyquist, modulo samples. This is very dif-
ferent from previous works which primarily focused on subsets
of multiband signal class [12], [26].

Our recovery method is theoretically guaranteed and leads to
perfect signal reconstruction, independent of band locations. We
validate our method through extensive numerical experiments,
demonstrating its effectiveness and accuracy.

Cs)

Notation. Integers, reals, and complex numbers are denoted by Z, R
and C, respectively. We use Iy = {0,--- ,N — 1}, N € Z* to
denote the set of N contiguous integers. Vectors and matrices are
written in bold lowercase and uppercase fonts., e.g. f € RY and
F € RY*M The max-norm of a function is defined as, | f||., =
inf{co = 0 : |f(t)] < co}; for sequences, w = maxy |f [n]].
Function derivative is denoted by f'(t).

II. Blind Sub-Nyquist Multiband USF

Problem Formulation. We consider the multiband signal model in
(1), where the spectral support and ¢ are both unknown'. As a
paradigm shift from the traditional sampling architecture, in USF, the
action of modulo non-linearity converts f(¢) to a folded, continuous-
time signal, y(t) = .#x(f(¢)). Then, y(¢) is sampled in a pointwise
fashion, leading to modulo samples y [n] = .Zx(f (¢))|,_,7»n € In
where T = 1/, is the sampling step. Given {y[n]} ', our goal
is to retrieve f(t) at sub-Nyquist rate.

Mathematical Model of the Sampling Pipeline. We extend the
multi-coset (MC) sampling architecture to USF context to tackle these
technical challenges. Denote by f. the MC signal samples
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li.e. the carrier frequencies {wk}]‘f:_ol are unknown prior to sampling.

where Ty is the time-delay and IIlf (¢) is multi-coset operator. n
and [ denote the sample and channel indices, respectively. Similarly,
denote by 3% the MC modulo samples, y!, = IIL, (nT + IT}).
Let ¢, = I, (nT +1Ta), on = @+ (L —=1)Ta/2)|,_,p
and Qg = ||wk|l,,. Denote by ﬂl the finite-difference of f,
ie. fl def l+1 fn

Overview of the Recovery Strategy Since each channel is under-
sampled, existing USF approaches that typically rely on chanel-wise
oversampling cannot be applied [19]-[21]. Nonetheless, the folding
non-linearity .#(-) is possible to be decoupled and inverted along
channel dimension. The key insight being that f. is a temporal-
spatial signal, its spatial variation across channels is upper bounded,
provided that Ty is sufficiently small. This spatial structure enables
the inversion of .#(-) via non-linear filtering of amplitudes similar
to the operation in [19] (see Theorem 1), resulting in the recovery of
fl With fl known, we demonstrate that f can be approximated
by a finite sum of complex exponentials up to a bounded error. As
a result, the carrier frequencies {wk}fzol can be estimated up to a
bounded standard deviation.

Due to the modulo non-linearity .#5(-), f can only be recovered
up to an unknown constant by performing anti-difference operator on
f il . This motivates the design of a direct recovery approach in finite-
difference domain. With spectrum support known from {wk}fgol and
Q, our key finding is that, one can perfectly reconstruct f(¢) from
{f ;}LEEHHLN, under appropriate hypotheses.

Blind Carrier Frequency Estimation. The result is as follows:

Theorem 1. Ler f(t) be a multiband signal defined in (1). leen
MC modulo samples {yﬁl}f@f“ defined above. Then, {ck,wy 1y
can be retrieved with an error of standard deviation

Vel £l
std{wr } < =
{ k:} X 2L3/2|Ck\\|¢n|\005in% (4)
std{|ck|} <

29Ty 14T
V2L o | oo sin 12| Td

if L 22K, Ty < w/Qx and B < )\/||f||oo where 3 and v are
defined by f3 4 9sin (QKQT“’ ) +QT4 and 'y = 1+(L 1) sin QKTd

Proof. We present the proof of this theorem by constructing the
solution to the carrier frequency estimation problem.

i) Inversion of Range Folding. Denote by fl the finite-difference
of f along channel dimension, we have (n € ]INJ elp)

K—-1
f

H—l _ Jwi (T +1Ty) 11
frn= E g € b, (5)
where hl, = @ltterwrTa_

l o <lentt = oh|+
|| |eJ“de 1|. From the Bernstein’s 1nequa11ty, we know that

I def
L

bt — ol | = )fl(lH)Td t+nT)dt| < Q| ¢ll, Ta- It suffices
to show that |e*"¢ — 1| = 2/sin “”‘2 4| . Hence, k!, is bounded
y !hu < (QSin QKQT‘i +QTq) ol - Let B = 251nM +

o lexl[hn] <

QT,. Thus, ! in (5) is bounded by |1 | < 52/5
llexll, » Wthh eventu-

lleklle, Bll¢llo - Notice that, [[f]l, = llell

ally results in ‘ ﬂl‘ B fll.- From the modular decomposition

property [19], [20], [22], we have f = Z\(f) + €5,e5(t) =
2meny, Cmlp,, (t) where cm € 2AZ. €5 is the residue function
and 1p is the indicator function on domain D. Then, we have

MY~ yn) = ///A(//A( S SR+ (g — e 1)) =
+1 _ :
AlUn . N
M ( fh) = A (f ). If Ty is small enough, then we have
BEMflow = (g™ — ) = F, ©)

n



(a) Realization #1 (Sampling Frequency=6.54kHz)
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Fig. 2: Numerical valldatlons The carrier frequencies lie in hundred kilohertz range with kilohertz scale sampling rate. We conduct 3 experiments with different
maximal frequency B = 5= of ©: (a) 4.18 kHz, (b) 12.36 kHz, and (c) 19.54 kHz. In all realizations, the reconstruction is accurate with €2 (f f) <2x1077.

which enables range unfolding independent of the sampling rate 7.

ii) Signal Approximation with Bounded Error. Notice that,
{f ber,, in (5) can be approximated by g, = EkK:_Ol ag, pe?rTal
where Ak = Cripne®* T (e?kTd — 1), And the approximation
error between fl and g is upper bounded by ’ fl —%’ <
‘ fl -9 ’ —|—L — gn‘ where the auxiliary variable g is defined
= Zk o Ck®n LeawrTn (eJ“de - 1) e?rTal  With gn,
et —onlllexll, < QTazllflloo

2xTd  which results in the

as g =
further have that ‘ fl ) ‘

and |g', — Gh] < Jpn — 01| ucknz 2sin
bounded approximation error characterized by

< (14 (L-1)sin

QT

L) OTy || £,
To eliminate the frequency aliasing, we require that, Ty < 7/Qk.
In what follows, we reinterpret o, as the standard deviation of an
additive Gaussian noise characterizing the uncertainty induced by
the model approximation inaccuracy.

N

iii) Blind Spectrum Parameter Estimation. With the approximation,
iil in (5) can be re-expressed as

K-1
_ Jw Tyl 1
= E k=0 Ak,n€ + M,

Given the samples {ﬁL}leHL, estimating {ax,n,ws } kel is the clas-
sical spectral estimation problem. We consider the uncertainties on
the estimated frequencies and amplitudes {ax,n,wk }rely , resulting
from the uncertainty on the samples, namely 7},.

To this end, we compute the Cramér-Rao Lower Bound (CRLB) of
a frequency estimation problem, under additive white Gaussian noise
of variance o4. As shown in [27]-[29], it is sufficient to consider
the Cramér-Rao bound for individual frequencies, provided that the
frequencies are well-separated. Such kind of result naturally holds
in the multiband context, since the carrier frequencies are generally

l

I M

n

)
<Jg, lely (8)

widely separated in the spectrum. Denote by std{ws} the standard
deviation of the error of estimating a 1D frequency wy, associated
with an amplitude |ag,»|, the Cramér-Rao lower bound reads

\/60
td > 79’
S {wk} T, |ak,n| 13/2

stdf{|arn|} > ©)

Og
V2L
and the proof can be found in [30], [31]. It is well-known that the
accuracy of algorithms like the maximum likelihood estimator (MLE)
reach CRLB empirically for a large range of noise variances and
asymptotically, when the number of samples L, tends to infinity [28],
[32], [33]. This means, if such efficient algorithms are used and L is
large enough, this inequality is, for all practical purposes, an equality

\/60'9

Std{wk} = 4Td |ak n| L3/27

std{|ak,n|} =

Tg
(10)
V2L
for all frequency indices k. Combining (7), the estimation uncertain-
ties on spectrum parameters {wk, |ax,|}4—,' are bounded by

V62 Qr.
stafun) < Y saflanaly < P

Notice that, ar,n = cr@ne’s"™ (e***7¢ —1). Hence, we have the
result shown in (4), which completes the proof of Theorem 1. [

Multiband Signal Recovery in Finite-Difference Domain. With
fn known, we reconstruct f(¢) via the following result:

Theorem 2. Let f(t) be a multiband signal defined in (1). Assume

dcf def \f'yQ Flloolerl™
o0 +20.,0. ¥ I \oo| l‘ci ~
k 2r? e llog M

Let vy, denote the MC modulo samples defined above. Let T
MTy, M € Z%. Then, f(t) can be exactly reconstructed if Ty <

ming jwi| > Qs



TABLE I: Summary of Experimental Parameters and Performance Evaluation.

Figure B s LA lflle fi fe & (£, F)
(kHz) (kHz) (kHz) (kHz)
Fig. 2 (a) 4.18  6.54 47 1542 171.03  [31.39,61.29,81.54] [31.72,63.11,81.97]  4.65 x 10~ 11
Fig. 2 (b) 12.36 1449 59 14.03 146.67 [48.97,89.09,109.69] [49.89,90.47,112.74]  8.20 X 10—12
Fig. 2 (c) 19.54 24.39 83 26.54 292.63 [56.21,96.27,109.68] [55.24,94.01,113.55] 2.88 x 10~17

Algorithm 1 Blind sub-Nyquist USF Multiband Recovery

Input: Modulo Measurements %, K and
1: Recover {i;}lfeﬂﬁv via (6).
2: Given (8), estimate {wy};_,' using spectral estimation.
3: Reconstruct f(t) via Theorem 2.

Output: The recovered multiband signal f (¢).

min(7mw,\ .
W, N = o0, L 22K, M < 92-7;(1 and the matrix
[ejznmr ]ﬂéi’” has a fully Kruskal-rank®.

Proof. Given the modulo samples, from Theorem 1, we can exactly
recover fl and {@r}r-' up to an error bounded by (Qs —
2Q)/2. The spectrum support estimate, S(f) = J, Si, Si =
{w||w—@k| < Q/2}, is known, which includes the spectral
support of f. Denote by F the Fourier transform of f, then,
we have F(w) = 0,Vw ¢ S(f). It suffices to show that, f is
(Qx + Q)- bandlimited Since g € R, Ty < 7w/(x + ), then
S(f) € [- T 75 #-]. From the Poisson summation formula, we have

2mlm
—gMnwTy __ e/~ M 2mm
that >° _, fle =D el W F(w+ 377, ) - Hence,

2m
lg—iMnwTq M—1 € 2 (eﬂ s —1) 2
ZnEZf ¢ = 3o MT, F("J+ J\/?:LTZ)
Yw € [— Ty MTd) l € 1. From the assumptlons ming |wg| >
Qs alnd]\/[<QT,WeshowEngg<Q +Q,s/tmlnk|wk|f—>

> L resultlnng( )_OVwE[

Ty M
Z FlemIMnwTa _ ZM* SO i - (w + Qmﬂ')
nez*n T Lam=1 MTq :
Since A has a fully Kruskal-rank, the sampling pattern associated
with 1. (nT + [Ty) is thus universal [7]. This results in a linear
system of equations with at most K non-zero unknowns, since M <
Si—’}d. S(f) indicates the support indices of F, leading to a unique
solution if L > K. With F (w),w € [—#-, 7-], we can perfectly
reconstruct f (¢) via the methods stated in [2], [9], [16]. O

Hence,

MTd ) MT )-

2

An algorithmic implementation is provided in Algorithm 1.

III. Experiments
To validate Theorem 2, we conduct the following experiments:

e Dependence of the estimation error on number of channels L.
e Dependence of the reconstruction error on the bandwidth 2).

For the ease of understanding, denote by B = % and fr =
S the maximal frequency and carrier frequency in Hz, re-

spectively. We use the mean squared error (MSE) 82<f,?) dof

N Zonco |f[n] -

Effect of L. We perform three experiments to show how signal
reconstruction error changes with number of channels. We fix the
carrier amplitudes {ck}fgol and increases the carrier frequency
range. The experimental parameters and results are tabulated in Table

2
[n} to characterize reconstruction accuracy.

2The Kruskal-rank of a matrix A is defined as the maximal value L such
that every set of L columns of A is linearly independent.

e~ Computed Error|
|| —€Q, in Thm.2

600

1000 1200 1400 1600

200 400 600 800
Bandwidth §2 (rad)

Fig. 3: Estimation error vs 2. Each data point is the average of 1000
independent tests with random Zcy (fixed |cg|). The computed estimation
error falls below the predictor 2, validating the result in Theorem 1.

I. Fig. 2 depicts the modulo sampling and signal reconstruction under
different sampling rates. From the experiments in Fig. 2 (b) and (c),
It can be observed that the increase in L leads to a comparable
frequency estimation accuracy. As shown in the last column of Table
I, perfect signal reconstruction can be achieved, which we validate in
both narrow-band and wide-band scenarios.

Effect of B. We fix the DR gain % = 10 and number of channels
L = 72 and increase B = % from 2.45 Hz to 281.90 Hz. For each
experiment, we compute the maximum frequency estimation error
maxy |wr — wi| by averaging 1000 independent realizations with
random phase Zcj (fixed |ck|). Fig. 3 reveals how the frequency
estimation error changes over different bandwidths. In all realizations,
the estimation error falls below the error bound calculated in (4),
which provides a quantitative predictor of the carrier frequency
estimation error. This effectively validate Theorem 2.

IV. Conclusion

In this paper, we have proposed a novel method for blind multiband
spectrum recovery from sub-Nyquist, modulo samples. By leveraging
channel redundancy, our method enables perfect signal reconstruction
in the absence of spectrum support information. Furthermore, we
provide the theoretical bounds and hypotheses for spectrum support
estimation in the presence of two kinds of non-linear folding in
both amplitude and domain dimension. The proof of our theorem
is constructive and leads to an efficient algorithm, which we validate
in various conditions. With theoretical guarantees, our work opens
up new capabilities for the field. Our algorithmic machinery directly
enables sub-Nyquist applications such as cognitive radio [1], optical
fiber communication [34] and RF communications [35] in the context
of USF. Furthermore, our work facilitates towards new directions
including, a) bandwidth-extension of modulo ADCs designed for
lower sampling rates, b) robust algorithms benchmarking with hard-
ware validation, c) investigation of new sampling architectures and
recovery approaches that can further tighten the error bounds.
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