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ABSTRACT

The problem of frequency estimation from sub-Nyquist samples
has numerous applications across various disciplines and has been
extensively studied in signal processing literature. Despite the exis-
tence of several algorithmic approaches, the full potential of these
methods has not been realized due to the limitations of analog-to-
digital converters (ADCs). In particular, accurately estimating fre-
quency for high-dynamic-range signals that may saturate the ADC is
still an interesting problem, regardless of the sub-Nyquist aspect. On
a different note, the Unlimited Sensing Framework (USF) focuses on
recovering large signals from folded samples but requires oversam-
pling. In this paper, we propose a hardware-software co-design ap-
proach that allows for frequency estimation from folded samples at
sub-Nyquist rates. Our key insight is that temporal redundancy can
be eliminated by introducing channel redundancy. Surprisingly, our
recovery guarantees are independent of the sampling rate. To achieve
this, we introduce a novel multi-channel sampling pipeline coupled
with a reconstruction algorithm. Beyond numerical experiments, we
build customized hardware and validate our approach through lab ex-
periments. This demonstrates the capabilities of our method in real-
world scenarios while opening up new questions for the field.

Index Terms— Sub-Nyquist sampling, frequency estimation,
unlimited sampling, non-linear reconstruction.

1. INTRODUCTION

Digitization and Nyquist-Rate. Digital acquisition is the corner-
stone of almost all modern technologies and applications. Underpin-
ning the digital acquisition paradigm is the Shannon-Nyquist frame-
work. This fundamental theorem sets a lower bound on the sampling
rate for recovery of bandlimited inputs. Namely, recovery is possible
provided that the sampling frequency is at least twice the bandwidth
of the input—the Nyquist rate. This constitutes the conventional digi-
tal acquisition protocol for which its practical implementation utilizes
analog-to-digital converters (ADCs).

Frequency Estimation at Sub-Nyquist Rate. Since the sampling
rate and the bit-budget dictate the implementation costs of the ADCs,
a natural question is: Can we achieve signal recovery at the sub-
Nyquist sampling rate? The utility of this question has been long
realized in the signal processing community and has motivated the
sub-field of the so-called sub-Nyquist sampling [1-7]. Among many
directions in sub-Nyquist sampling theory, one active topic is the fre-
quency estimation of sinusoidal signals. As a fundamental problem
in signal processing, frequency estimation has wide applications in
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many fields, spanning from radar, sonar, digital communications, to
time-of-flight imaging [8]. However, in several scenarios, the sinu-
soidal signal to be estimated has intrinsically high bandwidth and
the conventional Nyquist sampling becomes infeasible due to high
power consumption and large cost.

Related Work. Existing approaches on sub-Nyquist frequency esti-
mation or sNyg-Y ' can be categorized into two groups:

1) Stochastic Approaches. These approaches, in part pioneered by
Vaidyanathan, Pal and co-workers, are based on multiple groups
of sub-Nyquist samplers with co-prime sampling periods (see [7,
9]). The frequency aliasing caused by sub-Nyquist sampling is
eliminated by the autocorrelation sequence estimated via the co-
prime sampling period setups.

2) Deterministic Approaches. Based on the Chinese remainder the-
orem, these approaches have been studied to retrieve frequencies
from multiple sub-Nyquist samples since the mid-90s. Much of
the work has been spearheaded by Xia & co-workers [1-5]. By
first retrieving aliased frequencies via standard spectral estima-
tion techniques, these approaches remove ambiguity or frequency
folding, via the Chinese remainder theorem.

From an algorithmic standpoint, sNyq-Y entails “unfolding” of tones
that fold back or “alias” in the Fourier domain. Note that here aliasing
takes place along the abscissa.

Frequency (Abscissa) versus Amplitude (Ordinate) Unfolding. In
a different incarnation, this unfolding problem is also at the heart
of the Unlimited Sensing Framework (USF) [10-13]. The difference
being, in the USF, folding is purposefully injected to achieve folding
of amplitude or ordinate, to prevent information loss via ADC clip-
ping or saturation. Increasing the dynamic range of ADCs may avoid
this issue, but would result in poor digital resolution due to quanti-
zation. This yields a fundamental trade-off between dynamic range
and digital resolution in the Shannon-Nyquist Framework but is not
a limitation in the USF [14, 15].

In the USF, before capturing pointwise samples, a modulo non-
linearity of the form

1
M g'—>2)\(uz)\+ ﬂ

'We use sNyq-Y for sub-Nyquist Frequency Estimation asY symbolizes a
tuning-fork creating pure harmonics.
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Fig. 2: The block diagram of the designed acquisition pipeline for sub-Nyquist
Unlimited Sampling (sNygA-Y).

where |g| = sup {k € Z| k < g} (floor function) is injected in the
sampling pipeline. Consequently, an arbitrary high-dynamic-range
(HDR) signal is folded back into any low-dynamic-range (LDR) ADC
with range [— A\, A]. This fundamentally prevents saturation or clip-
ping. A hardware example based on modulo ADC [12] is shown in
Fig. 1. The key to the HDR recovery in the USF is algorithmic “in-
version” of the modulo non-linearity that amounts to “unfolding”
the modulo or folded samples [12, 16, 17]. This essentially shares
the same “unfolding” flavor as frequency estimation via sub-Nyquist
sampling, but the subtlety here is the distinction that arises between
abscissa and ordinate [18].

Motivation and Contributions. Currently, frequency estimation in
the USF leverages oversampling or temporal redundancy [19]. This
naturally leads one to ask the question: Can we perform sub-Nyquist
[frequency estimation or sNyq-Y with modulo samples? A positive an-
swer entails several benefits because in the USF, one can

1. significantly reduce the sampling cost as modulo ADCs inherently
work with low voltage ranges and consume low power [14],

2. prevent saturation or clipping resulting from arbitrary HDR input
signals [12], and,

3. provide higher digital resolution for a given bit-budget Radar [15].

The key contributions of this work are as follows:

C1) We design a novel acquisition pipeline (see Fig. 2) that achieves
sNyg-Y given modulo folded samples leading to sub-Nyquist
USF based Frequency Estimation or sNygA-Y.

C2) We design a novel algorithm (see Algorithm 1). Unlike previ-
ous works for bandlimited signals, we show that our recovery
is guaranteed independent of the sampling rate.

Cs3) Taking a step closer to practice, we build custom-designed
hardware to validate our approach, demonstrating its potential
benefits for real-world applications (see Section 6).

2. PROBLEM FORMULATION

Let ¢ (t) denote the sinusoidal input signal

K-1
gty=>%_, _ cxe”™! @

where cy, fi are the unknown amplitude and frequency, respectively.
Without loss of generality, we assume a real-valued g (¢) that accu-
rately describes the practice. By design, in USF, the modulo non-
linearity is applied in the analog domain, which folds the input g (¢)

intoa LDR [—\, ] (see Fig. 1). Thereon, the folded signal .#x(g(t))
is sampled in a pointwise fashion, resulting in modulo samples,

K—1
ya[n] = A (g(nT)) = M <Z Ckeﬂﬂij’;") 3)
k=0

wheren = 0,--- , N — 1 and f; = 1/T is the sampling frequency.
In our context, fs < 2 fmax Where fmax = max | fi|.

We introduce a multi-channel sampling architecture which will
be elaborated in Sec. 3. This yields multiple sequences of modulo
samples with distinct thresholds \;, 7 = 1, 2, as shown in Fig. 2,

{yki [n] =4, (a(nT)). i=1,2
i, [n] = Ao (9(nT + Ta)), i=1,2

where T} is the time delay. Given the modulo samples y, [1], 3, [n], i =

1,2, our goal is to design a recovery method that can retrieve the
signal parameters {cx, ffrg},{,(z_o1 with a theoretical guarantee.

3. SUB-NYQUIST USF FOR FREQUENCY ESTIMATION

As the sinusoidal signal ¢ (¢) is sampled below the Nyquist rate, most
recovery approaches designed for unlimited sampling, e.g. Fourier
domain partitioning [12], high-order difference [11] and iterative sig-
nal sieving [17], cannot be applied in our context.

Modular Decomposition. We start with the modular decomposition
property [12] which allows us to write,

() =3 "alp, ()

g = A(9) + €,

where ¢; € 2)0Z, €9 (t) is the residue function and 1 p is the indicator
function on domain D with U;D; = R. Let g[n] = g (nT) and T is
the sampling step. Denoting by y the finite difference of y, we have

yln) = gln] — 5ln) = i) = S “edln—n] @

where {m}f;ol are the unknown folding instants—the locations
where the modulo non-linearity kicks-in. The triggering rate of n;
depends on the .#—ADC threshold \. For a certain dynamic range,
the smaller the ), the higher the folding rate, and the larger is the
number of spikes in (4). Obviously, g[n] is not necessarily bandlim-
ited due to the frequency aliasing (or folding). In order to decouple
the dual-folding between amplitude and frequency, we adopt the
same strategy as in [20]; i.e., we trade the channel redundancy for
oversampling, which is characterized by the following lemma:

Lemma 1. Assume an arbitrary input signal g (t) sampled by
two M—ADCs with thresholds \1 and X2, yielding folded samples
Yx, 1], Yag [12]- Then, g[n] can be recovered if M1/ Az is irrational.

Proof. From (4), we have

y,, [0 =glnl =X, [n], v, [n] = gln] — &3, [n]

where €5 [n] = Zl[;i:_()l ¢, 0[n —ny,], 4 = 1,2 is the residue. Com-
puting the difference between y, [n] and y, [n] results in
—Al —A2

Li+La—1

£>\1,2 = ég\z [n} - éil [’I‘L] = Z 015[n — TLZ] (®)]

where ¢; = 2 o — 2\ qr, {p1, 1} € Z*. Provided that Ay /)2 is
irrational, the integers {p;, q; } can be uniquely determined from c¢;,

=0

2X(pr—p1) =2M(g—q) <= wm=p,a=q  (©)
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Once {pi, qi} is known, the residues €3 [n],i = 1,2 can be recov-
ered immediately, as well as g[n]. This completes the proof. O

‘We refer the interested readers to [20] for the proof. Lemma. 1 re-
veals that the one extra channel with a co-irrational threshold makes
it possible to recover the HDR samples g[n| at arbitrary sampling
frequency fs. However, aliasing creates ambiguity in frequency esti-
mation. In order to eliminate this indeterminacy, applying the same
channel-redundancy strategy, we have the following result:

Lemma 2. Assume a sinusoidal signal g (t) sampled by two sub-
Nyquist samplers with delay Tq, which results in

gi[n] = g (nT) and g2[n] = g (nT + Tu) . @)

K-1 . . 1
Then, the parameters {ck, fr },,_o can be retrieved if Tq < T

Proof. Let fi, = fx — |fi/fs] fs denote the aliased frequency of
fr. From the definition of (2), we have

Fr
giln] = YE e 0"

Tk
K 27 1 (Tg) 027 Fn
g2[n] =31 ! cpe??m Ik (Ta) 1275

(3)
Since fs < 2 fmax, equivalently, we can rewrite (8) as

11,
giln] = YR e 7"

f
K— 1 2 Tq 327
92[,’1} — cre’ mfxTa gl i

/

Since g;[n], ¢ = 1, 2 share the same sinusoidal components, they can
be retrieved by utilizing Prony’s method; let h[n] withn =0, -- - , K

be the filter z-transform h(z) = Zf:o h[n]z™" = kK 01(1 —

urz” ') where uy = > 1/ f5 | that is, its roots correspond to the
frequencies uy, to be found. Then, it follows that 4 [n] annihilates the
sinusoidal sequence g;[n],i = 1, 2:

(hxg)fn) =3 hlmlgifn —m]

K—1 K
=D, iy hmlu;™ =0 9)
The same applies to g2 (n). Let T(g1) denote the Toeplitz ma-
trix constructed by gi[n]. We can rewrite (9) in matrix form as
T(g1)h = 0 where T(g1) is a rank-deficient matrix. The filter
coefficients h[n] can be found by solving the above linear system of
equations. Thereafter, ux can be retrieved by computing the zeros of
polynomial fz(z) and amplitude c; can be found via least-squares.
As soon as {f},ck}i_, are retrieved, the phase term e’*™ k74
can thereby be estimated again via least-squares. Hence, fx can
be uniquely determined from the phase term due to the constraint
Ty < T}W, as well as the recovery of cy. O

The problem can be solved when there are at least as many equa-
tions as unknowns, implying that N > 2K + 1. Notice that, g[n] is
still a finite sum of sinusoids B

K—-1

_ S
g[n] = Zk:() Ck(eﬂ ¥s

which allows for parameter retrieval in the finite difference domain.
Combining the ingredients above, we finally have the following result
on sub-Nyquist unlimited sampling:

—1)e”"7s Fen

Algorithm 1 sNygA-Y: Frequency Retrieval via Sub-Nyquist USF

Input: Modulo Samples yx, [n], v5, [n],4 = 1,2.
Compute the residue difference 7, - via (5).
fori =0to L; + Lo — 1do

Find the integers {p:, ¢} via (6).
end for
Recover g(nT') via (4).
Recover g(nT + Td) from 4, [n],i = 1,2.
Estimate { f1 } via ).
Determine { fk} o from the fitted phase
Output: Signal parameters {frsen} i,

Theorem 1. Assume a sinusoidal signal g (t) sampled by a four-
channel sampling architecture as described in Fig. 2. Then, the sig-
nal parameters {cx, fk}kK:_o1 can be perfectly retrieved if \1/A2 is
irrational and Ty < Tim

Theorem 1 shows that leveraging inter-channel redundancy en-
ables HDR sNygA-Y, which significantly reduces the sampling cost
and power consumption (see hardware experiments in Sec. 6). More
concretely, by utilizing additional sampling channels with distinct
thresholds and time delays, we are able to decouple amplitude-
frequency folding and retrieve the signal parameters. An efficient
implementation of our recovery method is outlined in Sec. 4.

4. RECOVERY ALGORITHM

Letyy, [n] = 4, (9(nT)), y5, [n] = A, (9(nT + Ta)),i = 1,2
denote the measurements. Below, we outline the steps of our recovery
method.

Step 1: Amplitude Unfolding. We compute the difference r, , =
Yy, Yy, From Lemma 1, we haver, | , = g3, nl—€3, [, from
which the integer folding times can be retrieved via (6). Thereon,
€3, [nl, €3, [n] can be exactly recovered. Then, g[n] can be recon-
structed using (4) (the same steps apply for y’)\i ,0=1,2).

Step 2: Frequency Unfolding. From retrieved g(nT"), we can esti-
mate the folded frequencies f7, via (9) and ampli?udes through least-
squares. Given retrieved { f7,, cx }+—,' and g(nT+Ty), we determine

{fr,cr}r—y from the fitted phase via least-squares.
Fig. 2 describes the signal reconstruction process. An algorith-
mic implementation is provided in Algorithm. 1.

5. NUMERICAL EXPERIMENTS

We conduct numerical experiments to validate the proposed sam-
pling scheme. We use the mean-squared error between fj and f

sz 0 ‘fk—fk‘z

to evaluate the accuracy of frequency estimation. The experimen-
tal settings and results are tabulated in Table. 1. In all scenarios, we
achieve frequency estimation up to machine precision.

MSE(f%, fk

6. HARDWARE EXPERIMENTS

To assess the practicability and robustness of our method, we per-
form hardware experiments based on .#»—ADC that implements the
proposed sampling pipeline described in Fig. 2.
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(a) Realization #1 (Sampling Frequency=877Hz)
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(c) Realization #3 (Sampling Frequency=29Hz)
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Fig. 3: Hardware Experiment: Recovery from sub-Nyquist modulo samples. The frequencies to be estimated are fr =

[400, 700, 1000] Hz. We conduct 3

experiments with different sampling rates: (a) 877 Hz, (b) 227 Hz and (c) 29 Hz. In all realizations, the estimation is very accurate with MSE( f, fk ) < 4x1076,

Table 1: Summary of Experimental Parameters and Performance Evaluation.

Exp.No. N f, Te M % gl fr MSE(f, fir)
(Hz) (ps) (Hz)

I 29 1 1 014 01 839 [106.9,195.1,1345,103.6] 5.05x 102

1 20 1x1072 1 014 0.1 839 [106.9,195.1,134.5,103.6] 2.52 x 107>*

1 20 1x107® 1 014 0.1 839 [106.9,195.1,134.5103.6] 2.52 x 107%

Experimental Protocol. The HDR input signal is generated by TG-
5011A signal generators via amplitude modulation (AM). For each
experiment, we simultaneously acquire modulo samples from the
multi-channel .#—ADC devices with tunable thresholds. We simul-
taneously plot the input and output of the multi-channel .#—ADC
on the PicoScope 3406D oscilloscope to obtain the ground-truth.
A 6-bit sampler is used to sample the analog waveforms. Given the
6-bit resolution, the samples are effectively quantized by a 6-bit,
uniform quantizer and thus, the signal measurements are inevitably
contaminated by quantization noise. We fix the input HDR signal
and decrease the sub-Nyquist sampling frequency from 877 Hz to
29 Hz. For each experiment, we report the numerical values for,

—e the sampling frequency fs and delay 7g.

—e the sampling thresholds A;,¢ = 1, 2.

—e the dynamic range of the input signal ||g|| . = max|g|.
—e the number of samples V.

—e the MSE of frequency estimation.

The experimental parameters and results are summarized in Table 2.

Table 2: Summary of Experimental Parameters and Performance Evaluation.

Figore N fi Ta A X gl e i MSE(fx, f)
(Hz) (ms) (V) (V) (V) (Hz) (Hz)

Fig.3(a) 200 877 0.2 1.0 19 8.88 [400,700,1000]  [400,700,1000] 2.14 x 10-¢

Fig.3(b) 200 227 0.2 1.0 1.9 8.92 [400,700,1000]  [400,700,1000]  3.09 x 107¢

Fig.3(c) 100 29 02 1.0 1.9 882 [400,700,1000] [400,700,1000] 4.33 x 1077

We plot the amplitude-unfolding of the HDR input signal under

different sub-Nyquist sampling frequencies in Fig. 3. For each ex-
periment, the signal has a large dynamic range: ||g|| ., = 9.18\1 =
4.79X2. The co-irrational threshold design makes it possible to sam-
ple sinusoidal signals with large amplitudes, which fundamentally
eliminates the bottlenecks of dynamic range and digital resolution in
the conventional Shannon-Nyquist sensing pipeline. As fmax = 1000
Hz, the standard Nyquist sampling frequency is 2000 Hz. Thanks to
the proposed sampling pipeline, we are able to achieve accurate fre-
quency estimation with 43.9%, 13.9% and 1.45% of the Nyquist fre-
quency, which significantly reduces the sampling cost. As shown in
Fig. 3, despite the bit budget of the sampler, the HDR signals are ac-
curately reconstructed in all realizations, yielding accurate frequency
retrievals as tabulated in Table. 2. These hardware experiments effec-
tively demonstrate the high practical utility and robust performance
of the proposed sampling scheme in a variety of applications.

7. CONCLUSION

In this paper, we have proposed a novel method for frequency esti-
mation from sub-Nyquist, modulo samples. Our approach is based
on a co-design strategy. On the hardware front, we have developed a
multi-channel architecture that enables sub-Nyquist folded sampling.
On the algorithms front, our algorithm performs HDR unfolding.
Thanks to the customized sensing pipeline, different from previous
approaches, our sampling guarantee is independent of input band-
width. Due to the co-design approach, our work opens up new ca-
pabilities for the field. Our algorithmic machinery directly enables
sub-Nyquist applications such as radar sensing [15] and DOA esti-
mation [21] in the USF context. Furthermore, our work prompts to-
wards new directions including, a) bandwidth-extension or extending
the bandwidth of modulo ADCs designed for lower sampling rates,
b) efficient design of multi-channel hardware, c) investigation of new
architectures that can further minimize the number of channels.
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