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Abstract

Bridging the gap between theory and practice, the Unlimited Sensing Framework (USF) enables
simultaneous enhancement of dynamic range and digital resolution within a fixed bit budget—an outcome
unattainable with conventional sampling paradigms, which typically suffer from either signal clipping or
loss of resolution. At the heart of USF lies non-linear folding in the analog domain, resulting in modulo
samples and giving rise to a new class of signal recovery problems. In response, several time- and
frequency-domain recovery algorithms have been proposed in recent years. In this work, we introduce
a non-trivial hybridization that adopts a best of both (time-frequency) worlds approach, leading to the
Higher-Order Fourier–Prony (HoD-FP) Algorithm. The HoD-FP not only refines the underlying sampling
criteria but also achieves state-of-the-art signal recovery performance. We validate our method through
different hardware experiments, demonstrating considerable reduction in sampling rate and dynamic range
extension over existing techniques.

Index Terms

Analog-to-digital conversion, modulo non-linearity, sampling, signal sparsity, unlimited sensing
framework.
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Fig. 1: Hardware Experiment: Extreme Sampling
Conditions. We benchmark our HoD-FP method
with existing approaches, including IterSiS [13],
FP-Alg [3], WaveBus [14], B2R2 [15] and US-
Alg [2]. We use the same signal waveform that
was reported in Fig. 8 (Experiment 4) in [3],
while pushing down the sampling rate as low as
3.42× Nyquist-rate. Configured with 5.16× dy-
namic range extension, this yields dense, closely-
spaced folds (M = 39) in the measurements
(N = 89), resulting in failures of existing ap-
proaches. Despite these algorithmic challenges,
the proposed HoD-FP algorithm achieves accu-
rate signal recovery using 6-th order difference,
demonstrating its noise resilience and practical
efficacy.

I. INTRODUCTION

The Unlimited Sensing Framework (USF) [1]–[3]. introduces a fundamentally new paradigm for analog-
to-digital conversion (ADC), offering tangible advantages over conventional methods. What’s radically
different about USF? Any signal or sequence, say g, can be decomposed into an integer part (IP) or
⌊g⌋ ∈ Z and a fractional part (FP) or [[g]] ∈ [0, 1):

Signal = Integer Part+ Fractional Part ≡ g = ⌊g⌋+ [[g]]

In engineering terms, the IP corresponds to the time- and amplitude-quantized digital signal, while the
FP is typically regarded as undesirable quantization noise. USF pivots on a key mathematical insight:
for smooth signals, the fractional part encodes the integer part. This redefines signal acquisition,
representation and processing by enabling recovery of ⌊g⌋ directly from sampled quantization noise,
[[g]]. Since the IP can be arbitrarily large (⌊g⌋ ∝ g), conventional ADCs face a fundamental constraint:
with a fixed bit budget, one must choose between maximizing dynamic range (to avoid clipping) or
achieving high digital resolution—but not both. In contrast, by digitizing only the FP or [[g]] ∈ [0, 1)—or
equivalently, the modulo signal—USF eliminates this trade-off. This translates to simultaneous capture
of high-dynamic-range (HDR) signal with high-digital-resolution (HDRes). The boost in HDRes implies
higher data quality offering clear benefits for the recovery algorithms.

Starting with [3], the development of modulo ADCs [4]–[6] within the USF has led to both quantitative
and qualitative performance upgrades, for instance, a 60x improvement in dynamic range [5]; a 10
dB reduction in quantization noise floor in radar [7] and tomography [8]; a 30 dB enhancement in
Signal-to-Noise and Distortion (SINAD) [5]; support for higher-order modulation schemes in MIMO
communications [9]; self-interference cancellation [10]; a 1200x downsampling factor in sub-Nyquist
spectral estimation [11]; and improved signal and gesture classification accuracy [12].
Challenges and Related Works. Decoding the original HDR signal from the folded samples necessitates
the novel mathematical algorithms. The existing approaches, also see Fig. 1, can be broadly categorized
into two groups: 1) Time-domain approaches, starting with Unlimited Sampling algorithm (US-Alg) [1],
[2], [4], linear prediction [16], unlimited one-bit (UNO sampling) [17], and WaveBus [14]. Such methods
feature DR compressibility with recovery independent of the input DR e.g. US-Alg, and 2) Fourier-domain



approaches such as the “Fourier–Prony” algorithm (FP-Alg) [3] leverage sparse priors. These methods
exhibit noise resilience, but require a sampling rate that depends on the dynamic range (DR). Although
FP-Alg delivers competitive performance, its sparsity assumption over modulo-induced folding limits DR
compressibility, as the number of folds translates into unknown frequencies during parameter estimation.

Time-Frequency Hybridization Approach. Just as genetic hybridization yields advantageous traits
by combining different gene pools, our algorithmic hybridization fuses time- and frequency-domain
approaches to leverage complementary strengths for enhanced recovery performance. On one hand,
higher-order differences (HoD) acting on ⌊g⌋ in FP-Alg induce higher folds, increasing the number of
unknown parameters and thus complicating the recovery problem. On the other hand, as shown in US-

Alg, the same HoD operation is instrumental to the ethos of “unlimited sensing,” enabling arbitrary HDR
recovery. To construct a hybridized approach, we introduce HoD into FP-Alg. While this initially increases
the parameter space, we mitigate the resulting complexity through non-linear filtering, by injecting the
modulo operator into the recovery process. This reduces the effective number of unknowns while achieving
HDR capabilities in FP-Alg that are otherwise unattainable with first-order differences alone.

Contributions. The core contribution of this work lies in the hybridization of US-Alg and FP-Alg, improving
the sampling criteria and enabling performance improvement in sampling rate and dynamic range
extension over existing approaches.

❏ Algorithm. We propose a novel recovery method, the HoD-FP, which generalizes the first-order FP-Alg

and is backed by recovery guarantees, operating in regimes where existing methods fail (see Fig. 1).

❏ Experiments. We conduct hardware experiments under challenging scenarios—(i) 3.42x Nyquist rate,
(ii) 11.24x DR extension, and (iii) 10.19 kHz input bandwidth—to demonstrate the practical advantages
of the proposed HoD-FP method.

II. HIGH-ORDER FOURIER-PRONY RECOVERY

Problem Formulation. We consider the τ -periodic bandlimited signal, which is mathematically defined
as,

g (t) =
∑K

k=−K
gke

ȷ 2kπt

τ , t ∈ [0, τ ] , g ∈ R (1)

for which its bandwidth is characterized by Ωg = 2Kπ/τ . The folding non-linearity maps g (t) into a
low-dynamic-range, continuous-time signal, y (t) = Mλ(g (t)), where

Mλ : g 7→ 2λ

([[
g

2λ
+

1

2

]]
− 1

2

)
, [[g]]

def
= g − ⌊g⌋

λ > 0
(2)

and ⌊g⌋ = sup {k ∈ Z| k ⩽ g} denotes the integer part of g. Subsequently, y (t) is pointwise sampled,
resulting in folded samples y [n] = Mλ(g (t))|t=nT , n ∈ IN where T = τ

N is sampling step and N is the
number of samples (IN = {0, . . . N−1}). In real-world scenarios, since the modulo-folding acts in analog-
domain, noise arises from (i) thermal noise that follows a Gaussian distribution [18] and (ii) quantization
noise that follows a uniform distribution. As a result, the noisy, “distorted” folded measurements can be
expressed as [19], yw [n] = y [n]+w [n] . In practice, since USF offers HDRes with the same bit-budget,
thermal noise dominates the measurement noise, leading to w [n] ∼ N (0, σ2) [11]. We refer the reader to
Fig. 6 in [11] for details on hardware experiments that justify the noise hypothesis. Given {yw [n]}n∈IN ,
our goal is to develop a theoretically guaranteed recovery method that is noise resilient and operates at
low-sampling-rate.

Incorporating HoD with FP-Alg. The key advantage of FP-Alg lies in enhancing sparsity by using a
combination approach: operating in HoD domain and introducing non-linear filtering. Note that, g =
Mλ(g) + εg, εg (t) =

∑M
m=1 cmu (t− τm) , where u (·) is the unit step function, and cm ∈ 2λZ and



τm ∈ T IN denote the fold amplitude and instant, respectively. Denote by {∆(h)g,∆(h)y,∆(h)εg} the
h-th order finite difference of {g, y, εg}, respectively. Then, we have,

∆(h)g [n] = ∆(h)y [n] + ∆(h)εg [n] (3)

where ∆(h)εg [n] =
∑Mh

m=1 cm,hδ [n− nm,h], cm,h ∈ 2λZ, nm,h ∈ IN−h, and Mh ⩾ Mh−1, h ∈ Z+.
While, in practice, the noisy folded measurements lead to, ∆(h)yw [n] = ∆(h)g [n] − ∆(h)εg [n] +

∆(h)w [n] , where ∆(h)w [n] ∼ N (0, σ2
h) and σh = ( (2h)!(h!)2 )

1

2σ. In this paper, we leverage the signal
sparsity in HoD domain—an overlooked property in existing literature. By definition, we have,

∆(h)g [n] = Mλ(∆
(h)g [n]) + ε∆(h)g [n] (4)

and from (3), using modular arithmetic, we can conclude that,

Mλ(∆
(h)g [n])

(a)
= Mλ(∆

(h)y [n]) (5)

where (a) follows from ∆(h)εg [n] ∈ 2λZ. Hence, (4) translates to, ∆(h)g [n] = Mλ(∆
(h)y [n]) +

ε∆(h)g [n], where

ε∆(h)g [n] =
∑Mh

m=1
cm,hδ [n− nm,h] , cm,h ∈ 2λZ. (6)

Under appropriate sampling condition, we can obtain amplitude shrinkage of ∥∆(h)g∥ℓ∞ , leading to
promotion of sparsity,

∥∆(h)g∥ℓ∞ ⩽ ∥∆(h−1)g∥ℓ∞ =⇒ Mh ⩽ Mh. (7)

Therefore, (7) enables the recovery of ε∆(h)g via sparse estimation, so that Mλ(∆
(h)y [n])+ε∆(h)g [n] 7→

∆(h)g [n].

Our main result is summarized as follows:

Theorem 1. Let g (t) =
∑K

k=−K gke
ȷ 2kπt

τ , t ∈ [0, τ ] , g ∈ R and the noisy folded samples be yw [n] =
Mλ(g (nT )) +w [n] , n ∈ IN with T = τ/N and w [n] ∼ N (0, σ2). Then, g [n] can be reconstructed up
to an error

std{P 2Kπ

τ
(g̃)− g} ⩽

√
2K
N σ (8)

where std{·} and PΩ (·) represent the standard deviation and bandlimited projection within [−Ω,Ω],
provided that,

N ⩾ max
(
max

(
6∥g∥L∞

λ , 6K + 2
)
+ h, 2Kλ2(h!)2

λ2(h!)2−2σ2(2h)!

)
,

T < τ
4Kπ , where h =

⌈
ln(2λ)−ln∥g∥L∞
ln(2KπT )−ln τ

⌉
. (9)

Proof. We start our proof with the amplitude shrinkage: Define the shift-difference operator as ST (·) =
(·)(t+ T )− (·)(t).

Amplitude Shrinkage. Then, by definition, we can derive that,

∆(h)g [n] = S(h)T (g) (t)
∣∣∣
t=nT

, S(h)T = ST ◦ S(h−1)
T (10)

where ◦ denotes function composition. Next, we prove that ∥ST ∥L∞ < 1 if T < 1
Ωg

. Since g is Ωg-
bandlimited, from Bernstein’s inequality, we can derive that,

∥ST (g)∥L∞
⩽ ∥∂(1)

t g∥L∞T ⩽ ΩgT ∥g∥L∞
.



By induction, we have
∥∥∆(h)g

∥∥
ℓ∞

⩽ (ΩgT )
h ∥g∥L∞

. Given T < Ω−1
g , hence, we can further derive that,

h ⩾
⌈
ln(2λ)−ln∥g∥L∞

ln(ΩgT )

⌉
=⇒

∥∥∥∆(h)g
∥∥∥
ℓ∞

⩽ 2λ. (11)

Bounded Sparsity Level. Let h =
⌈
ln(2λ)−ln∥g∥L∞

ln(ΩgT )

⌉
, then we can derive that, Mh ⩽ 4K since

∥S(h)T (g)∥L∞ ⩽ 2λ and thus the modulo-folding is only triggered when |S(h)T (g) (t)| ⩾ λ.

Residue Estimation via Fourier Partitioning. Denote by {ĝh, ŷh,w, ε̂g,h, ŵh} the Discrete Fourier
Transform (DFT) of {∆(h)g,∆(h)yw, ε∆(h)g,∆

(h)w}, respectively and,

ŷh,w [l] ≈ ĝh [l]− ε̂g,h [l] + ŵh [l] , l ∈ IN−h. (12)

To evaluate ŷh,w, we first compute ∆(h)g, as well as ĝh. By definition, from (1), we can obtain that,

∆(h)g [n] =
∑K

k=−K
gk,he

ȷ 2kπTn

τ , gk,h = gk(e
ȷ 2kπT

τ − 1)h.

Then, ĝh [l] can be mathematically characterized as,

ĝh [l]
(b)
≈

K∑
k=−K

gk,h

N−h−1∑
n=0

eȷ
2πn

N−h
(k−l) = (N − h)gm,h

which follows from the hypothesis that N is sufficiently large. As a result, we can derive that, ĝh [l] =
0,∀l ∈ [K + 1, N − h−K]. Hence, in the out-of-band region ([K + 1, N − h−K]), we have ŷh,w [l] =
−ε̂g,h [l] + ŵh [l]. Next, we compute ε̂g,h and ŵh to characterize ŷh,w, utilizing (6),

ε̂g,h [l] =
∑Mh

m=1 cm,he
ȷum,hl, E

(
(ŵh)

2
)
= σ2

ŵh

where um,h = −2πnm,h

N−h and σŵh
= ( (N−h)(2h)!

(h!)2 )
1

2σ
.

Note that, cm,h ∈ {−2λ, 2λ} since ∥S(h)T (g)∥L∞ ⩽ 2λ. Thus, in the out-of-band region, ŷh,w can be
expressed as,

ŷh,w [l] =

Mh∑
m=1

−cm,he
ȷum,hl + ŵh [l] . (13)

Finding {cm,h, um,h}Mh−1
m=0 from {ŷh,w [l]}N−h−K

l=K+1 boils down to spectral estimation. To establish the
link between noise level and parametric estimation precision, we resort to the Cramér-Rao Bounds
(CRBs) under additive white Gaussian noise ŵh. As shown in [20]–[22], the CRBs derived for individual
frequency apply to multiple frequencies scenario, if they are well-separated. Such kind of result
holds in our context, since ∥S(h)T (g)∥L∞ ⩽ 2λ. Let {std{cm,h}, std{um,h}} represent the standard
deviation of the error of estimating the sinusoidal parameter {cm,h, um,h}, thus the CRBs read [23],

std{um,h} ⩾
√
6σŵh

|cm,h|(N−h−2K)3/2 , std{cm,h} ⩾
σŵh√

2(N−h−2K)1/2
. It is well-documented that the accuracy

of algorithms like maximum likelihood estimator asymptotically approach CRBs for a large range of
noise levels, when the number of samples N tends to infinity [21], [24]. This suggests, if such efficient
algorithms are used and N is sufficiently large, the inequality above can be treated as an equality in
practice, leading to, std{nm,h} =

√
6(N−h)σŵh

4πλ(N−h−2K)3/2 , std{ cm,h

2λ } =
σŵh

2
√
2λ(N−h−2K)1/2

, where nm,h ∈ IN−h

and cm,h

2λ ∈ {−1, 1}, hence, we can exactly find {cm,h, nm,h} if,

max
(
std{nm,h}, std{ cm,h

2λ }
)
⩽ 1

4 . (14)

Given that N is large enough, i.e. N − h≫ 6K +2, we have std{nm,h} ⩽ std{ cm,h

2λ }, and thereby, (14)



TABLE I: Hardware Experiments: Parameters and Performance Metrics.

Figure Exp. No. Oversampling Factor Ωg

2π T ∥g∥L∞
λ N M h E(g̃,g)

(kHz) (µs) (V) (V) HoD-FP IterSiS [13] FP-Alg [3] WaveBus [14] B2R2 [15]

Fig. 1 I 3.42 0.65 225 10.37 2.01 89 39 6 1.40× 10−2 2.31× 101 1.86× 101 2.01× 101 4.89× 101

— II 6.45 1.11 70 8.99 0.80 400 205 4 2.47× 10−2 — — 1.50× 101 2.66× 101

— III 4.46 10.19 11 1.97 0.40 455 318 2 1.41× 10−3 — — 1.37× 100 1.54× 100

translates to, √
N−h

N−h−2K

√
(2h)!
(h!)2

σ
λ ⩽ 1√

2
. (15)

Since N−h
N−h−2K < N

N−2K , hence N
2K ⩾ (1 − 2σ2

λ2

(2h)!
(h!)2 )

−1 guarantees that (14) holds, where N/2K =

π/ΩgT represents the oversampling factor. Hence, ε∆(h)g can be recovered.

Recovery and Denoising. With ε∆(h)g known, we can recover εg up to an unknown constant (2λZ) via
anti-difference operation [2]. From (3) and (4), we obtain ∆(h)εg, since ∆(h)εg [n] = Mλ(∆

(h)y [n]) +
ε∆(h)g [n]−∆(h)y [n] . Let S denote the anti-difference operator followed by on-grid projection, which is
defined as, S∆(l)εg 7→

⌊
S∆(l)εg + λ/ (2λ)

⌋
. This leads to ∆(l−1)εg [n] = S∆(l)εg [n] + κlf [n], where

f [n] = 2λ and κl ∈ Z. As demonstrated in [2], we can resolve κl, l ∈ [2, h]. By applying S twice, we
have that,

∆(l−2)εg [n] = S(2)∆(l)εg [n] + κlSf [n] + κl−1f [n] (16)

where Sf [n] = 2λn is a linear sequence. Furthermore,
∣∣∆(l−2)εg [n]−∆(l−2)εg [n+ J ]

∣∣ is upper
bounded, since

∆(l−2)εg ([n]− [n+ J ]) ∈ 2λJ
[
κl −

3∥g∥L∞
2λJ , κl +

3∥g∥L∞
2λJ

]
. (17)

As a result, (17) has an unique integer solution to κl, if

3 ∥g∥L∞

2λJ
⩽

1

4
⇐⇒ J ⩾

⌈
6 ∥g∥L∞

λ

⌉
. (18)

We refer the reader to Theorem 2 in [2] for mathematical details. With (17) and (18), we can recursively
estimate κl and reconstruct εg and g̃ up to an unknown constant 2λZ,

g̃ [n] = yw [n] + S(h)∆(h)εg [n] . (19)

The signal prior in (1) allows for enhancing reconstruction precision via low-pass filtering, which is,
PΩg

(g) = g and std{PΩg
(w)} = (2KN )1/2σ, where PΩg

(·) denotes the bandlimited projection within
[−Ωg,Ωg]. Integrating ingredients above, finally we have, std{PΩg

(g̃)− g} ⩽ (2KN )1/2σ.

Remarks. The key takeaway from Theorem 1 is threefold: i) Theorem 1 improves the sampling rate
condition in [2] by eliminating the Euler’s constant “e”, ii) Theorem 1 also applies to general bandlimited
signals, although it is derived based on the signal model in (1) (see Section III), and iii) Oversampling
factor, namely N

2K , affects the finite difference depth h and final recovery precision (8).

Algorithmic Implementation. The proof of Theorem 1 is constructive and leads to a noise resilient
signal recovery approach—high-order Fourier-Prony algorithm (viz. HoD-FP), that also applies to general
bandlimited signals. One key step in HoD-FP method is spectral estimation, aiming at finding the residue
against amplified measurement noise. In this paper, we use the classic matrix pencil method for this
purpose [25] 1. The procedure of HoD-FP is summarized in Algorithm 1.

1Other high-resolution techniques like atomic-norm minimization [26] and model-fitting [24] could also be used in our context.



HoD-FP: High-Order Fourier-Prony Recovery.

Input: Noisy folded measurements {yw [n]}n∈IN .
1: Compute the difference order h via (11).
2: Conduct h-th order difference on yw.
3: Calculate ŷh,w [l] via DFT.
4: Using matrix pencil [25] to recover ε∆(h)g.
5: Recover εg by recursively computing κl via (17).
6: Reconstruct g̃ via (19).
7: Conduct bandlimited projection: g̃ ← PΩg

(g).
Output: The recovered signal g̃.

III. EXPERIMENTS

To translate theory into practice, we conduct three hardware experiments to validate the proposed
HoD-FP algorithm, spanning (i) low-sampling-rate, (ii) large dynamic range (DR) extension and (iii) large
input bandwidth. We benchmark our method against existing recovery approaches, including IterSiS [13],
FP-Alg [3], WaveBus [14] and B2R2 [15], to demonstrate its algorithmic robustness and practical advantages.
Experimental Protocol. In each experiment, the analog bandlimited signal generated from function
generator is fed into modulo-ADC [3]. Together with the output of the modulo-ADC, we simultaneously
record the original HDR input on the oscilloscope, serving as the ground truth. Experimental parameters
including input bandwidth Ωg, sampling rate T , dynamic range ∥g∥L∞

, among others are tabulated in
Table I.
Low-Sampling-Rate. Oversampling is the critical factor for most USF recovery methods. In the first
experiment, we use the same signal waveform that was evaluated in Fig. 8 (Experiment 4) in [3], while
pushing the sampling rate as low as 3.42 Nyquist-rate with 5.16× DR extension, as shown in Fig. 1.
Due to the challenging sampling scenario, all existing approaches fail (see Fig. 1). However, our HoD-

FP algorithm offers an accurate signal reconstruction with E(g̃,g) ∝ 10−2, operating at 6-th order
difference domain. This effectively demonstrates the low-sampling-rate capability and noise resilience of
the proposed HoD-FP method.
Large DR. Dynamic range and input signal bandwidth are the two key metrics to evaluate the performance
of USF. To this end, in the second experiment, we increase the DR extension as ∥g∥L∞

/λ = 11.24 with
oversampling factor of π

ΩgT
= 6.45. This setting yields M = 205 folds out of 400 measurements, where

the existing approaches [3], [13]–[15] cannot handle (i.e. M > N
2 ), as reported in Table I. While, our

HoD-FP algorithm adopts 4-th order difference, and achieves precise signal reconstruction E(g̃,g) ∝ 10−2.

Large Input Bandwidth. In the last experiment, we further push the signal bandwidth to Ωg

2π = 10.19
kHz and use oversampling factor of π

ΩgT
= 4.46 with ∥g∥L∞

/λ = 4.93. This sampling setup results
in substantial folding-count (M = 318, N = 455), where previous approaches cannot handle. HoD-FP

algorithm successfully reconstruct the input signal, showcasing its practical advantages of processing
large amount of folds in low-sampling-rate, high-bandwidth scenarios.

IV. CONCLUSION

The Unlimited Sensing Framework (USF) breaks the bottleneck of concurrent high-dynamic-range
and high-digital-resolution data capture in the conventional sampling scheme. In this paper, we propose
a joint time-Fourier domain method that is theoretically guaranteed and offers superior performance.
We benchmark our method against state-of-the-art approaches and demonstrate its superior performance
in challenging hardware experiments. Our future work lies in the fronts of: (i) relaxing the sampling
conditions via optimization scheme, (ii) involving the non-Gaussian measurement distortion in noise
analysis and (iii) robust algorithm design.
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