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Abstract—The problem of sub-Nyquist multiband sensing has numer-
ous applications across various fields. Despite substantial algorithmic
pursuits, the practical implementation of these methods is subject to
limitations of digital acquisition via analog-to-digital converters (ADCs).
Multiband reconstruction for high-dynamic-range signals that may satu-
rate the ADC is a practical yet challenging problem in many applications.
From a different perspective, the Unlimited Sensing Framework (USF)
focuses on reconstructing large signals from folded samples yet requires
oversampling. The key challenge of multiband reconstruction via sub-
Nyquist USF lies in the fundamental stalemate between sub-Nyquist
acquisition and the oversampling assumptions required for unfolding.
In this paper, we propose a hardware-software co-design approach that
enables multiband reconstruction from folded samples at sub-Nyquist
rates. The key insight here is to trade the channel redundancy for
temporal sampling rate. We extend the multi-coset sampling strategy
to the USF context and design a novel reconstruction algorithm. We
demonstrate the robustness of our method via Monte-Carlo experiments.
Beyond numerical experiments, we build customized hardware and
validate our approach through lab experiments. This demonstrates the
capabilities of our method in real-world scenarios while creating new
avenues and opportunities for the field.

Index Terms—Multiband, nonuniform periodic sampling, sub-Nyquist
sampling, unlimited sampling.

I. Introduction

Underpinning the current digital acquisition paradigm is the well-
known Shannon-Nyquist framework, which lays the foundation of the
digital revolution. This fundamental theorem establishes the relation
between continuous-time, bandlimited signals and their equidistantly
sampled measurements. This finding is at the core of the digital
acquisition protocol for which its practical implementation utilizes
analog-to-digital converters (ADCs).

Multiband Recovery at Sub-Nyquist Rate. As the sampling rate
and the bit-budget for quantization dictate the implementation cost
of the ADCs, signal recovery at the sub-Nyquist rate has attracted
attention in the signal processing community, which motivated the
sub-field of the so-called sub-Nyquist sampling [1]-[10]. Among
many directions in sub-Nyquist sampling theory, one active topic
is the multiband reconstruction. Such kinds of signals have spectral
support with multiple passbands, as shown schematically in Fig. 1,
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ok (t),k € Ik is bandlimited with bandwidth 2Q. {wx}sr ' are
known carrier frequencies satisfying ming |wi| > 2. Multiband
signals are at the core of various applications, such as cognitive
radio [11], RF communication [5], optical fiber communications [12],
[13] and orthogonal frequency-division multiplexing communications
[14]-[16]. Since multiband signals are intrinsically featured with
high bandwidth, the conventional Nyquist sampling thus becomes
infeasible due to high power consumption.
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Fig. 1: Typical spectrum support of a multiband signal g(t).

Related Work. Existing approaches on sub-Nyquist multiband signal
reconstruction or sNyg-MB can be categorized into two groups:

1) Known-Spectrum Techniques. Low-rate uniform sampling was
studied in [17] for a real bandpass signal. Lin and Vaidyanathan
extended periodic non-uniform sampling approach to multiband
signals in [18]. These methods allow exact recovery at rates
approaching that derived by Landau [19].

2) Blind-Spectrum Techniques. Reconstruction under partial knowl-
edge of the spectral support was addressed in [6], [7], [20]. These
works use a multi-coset architecture and do not assume the exact
support but impose a certain mathematical condition on band
locations. Herley and Wong [21] suggested a half-blind sampling
system. Mishali and Eldar proposed a spectrum-blind method with
reconstruction guarantee in [5].

From an algorithmic viewpoint, sNygq-MB entails “unfolding” of
spectrum that fold back or “alias” in the Fourier domain. Note that
here aliasing takes place along the domain.

Spectrum (Domain) versus Amplitude (Range) Unfolding. Appear-
ing in another form, this unfolding problem is also at the heart of the
Unlimited Sensing Framework (USF) [22]-[25]. The difference being,
in the USF, folding is purposefully injected to achieve folding of
amplitude, to prevent information loss via ADC clipping or saturation.
Increasing the dynamic range of ADCs may avoid this issue, but
would compromise the digital resolution due to quantization. This
yields a fundamental trade-off between dynamic range and digital
resolution in the Shannon-Nyquist Framework but is not a bottleneck
in the USF [26], [27]. In the USF, before capturing pointwise
samples, a modulo non-linearity of the form
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where |g| = sup{k € Z|k < g} (floor function) is injected in
the sampling pipeline. USF simultaneously achieves HDR and high
digital resolution, providing a performance breakthrough in 1) up to
25\ to 30 [24] dynamic range improvement in the presence of non-
idealities, system noise and quantization; 2) 10-12 dB improvement
in the quantization noise floor over the conventional ADC, in the
context of radars [27] and tomography [28], and 3) higher-order
modulation schemes in MIMO communications in [26], e.g. 1024
QAM. In essence, USF shares the same “unfolding” spirit as multi-
band reconstruction via sub-Nyquist sampling, whereas the subtle



difference is the source of folding non-linearity. While sub-Nyquist
acquisition is our ultimate goal, we know that reconstruction methods
at the core of USF require oversampling [23], [24], [29]. Hence, sub-
Nyquist acquisition results in a fundamental contradiction instigating
a stalemate between analysis and synthesis, creating challenges for
multiband recovery from sub-Nyquist, folded samples.
Contributions. As a subset of multiband signal class, we have studied
sub-Nyquist USF for bandpass signals in [30] and sums of sinusoids
n [8]-[10]. However, there exists no sub-Nyquist USF multiband
reconstruction (sNyq-MB) yet. This naturally leads one to ask the
question: Can we achieve sNyq-MB with modulo samples? A positive
answer would translate to several benefits since one can 1) reduce
sampling cost ADCs [26], 2) eliminate clipping arising from HDR
input signals [25], and 3) achieve high digital resolution with a given
quantization bit-budget [27]. The key contributions of this work are:
C1) We design a novel algorithm that enables multiband recovery
from sub-Nyquist, modulo samples (see Algorithm 1). Through
Monte-Carlo experiments, we show that our algorithm is robust
that allows accurate reconstruction up to a low SNR (17 dB).
C,) Taking a step closer to practice, we build custom-designed
hardware to validate our method, showcasing its practical utility
for real-world applications (13x DR gain, see Section III).

Notation. Integers and real numbers are denoted by Z and R,
respectively. We use Iy = {0,--- ,N — 1}, N € Z" to denote
the set of NV contiguous integers. Vectors and matrices are written in
bold lowercase and uppercase fonts, e.g. g € RY and G € RV*M,
The max-norm of a function is defined as, ||g|| ., = inf{co > O :
lg(®)| < co}; for sequences, ||g|\ = maxn lg [7]|- The £2-norm of
a sequence is defined as ||g||, = gln ]\2)1/2. The M -order
derivative of a function is denoted by gglL

II. Multiband Recovery via Sub—Nyquist USF

Problem Formulation. We consider the multiband signal model in
(1). In USF, the action of modulo non-linearity maps g (t) to a
folded, continuous-time, low-dynamic-range (LDR) signal, y(t) =

A (g(t)). Thereon, y(t) is sampled in a point-wise fashion, leading
1

to modulo samples y [n] = #x(g(t))|;—,» where T = + >
m is the sampling step. In real-world scenarios, the modulo
measurements are corrupted by noise y, = y[n] +n[n],n € Iy,

where 77 models a variety of non-idealities, such as quantization,
system noise and non-ideal foldings. Given {yy[n]}ner, , our goal is
to retrieve the multiband signal g (t).

Mathematical Model of the Sampling Pipeline. To overcome
aforementioned challenges, we extend the multi-coset (MC) sampling
architecture in USF context. Denote by ¢!, the MC samples,

gl =11, (nT + ITy) 3)
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where T;; > 0 is the time-delay, I, (¢) is multi-coset operator and
Where n and [ denote the sample and channel indices, respectively. Let
yn be the modulo MC samples, defined as ', = 111, (nT + le) Let
Ohn =, (nT + le) and Qx = maxy |wg|. Denote by y g
the finite-difference of yn, gn
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To uncover the underlying mathematical structure of the USF-MC
samples, we apply the modular decomposition property [24]
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where {vn,;, Tn,j}lﬁ‘g ! are the unknowns that parametrize the
residue signal, gln. Note that v, ; € 2)\;Z.

Overview of the Recovery Strategy. Since each channel {g, }nery
is undersampled, the folding non-linearity along range cannot be
inverted by non-linear filtering of amplitudes [23] or by Fourier-
domain partitioning in [24]. Nonetheless, common to the theme of
USF is that idea of residue recovery [23] [24], [29], [31] i.e. given
yl , estimate 5 so that y + 5 . We adopt a similar idea
Wthh follows a different approach The key insight being that g, is a
spatial-temporal signal, its spatial variation along channel dimension
is bounded if 7} is sufficiently small (see Lemma 1). This spatial
structure results in recovery of the residue el via sparse optimization
methods. Once e is estimated, we can recover g = y + sn

Dliferent from conventional approaches that recover g (t) from
{g }ZGHL, we directly achieve recovery of g (t) from obtained
{d" }neHN We demonstrate that, one can perfectly map {QZ}LEEHLLN
to g( ), under appropriate assumptions (see Lemma 3).

Bounded Variation 0f the Residue s
that the variation of !,

. In the next result, we prove
is bounded if Td is small enough.

Lemma 1. Let g(t) be a multiband signal defined in (1). As-

sume Tq < w/(Qx + Q). Then, gil satisfies that )Q;’ < A\ if
Bmaxp ||kl llekll,, <A where B = 2sin % + QTy.

Proof From the definition, we have that g' R R -
Zk o cuh erk(nTHTd) where hi’n — SOI-H@kaTd — Sﬁk,n
and is bounded by ’hfC n| ‘(p“rl apﬁc " ‘(p“rl‘ |67“’de — 1’

Since ¢, € Ba,k € Ik, from the Bernstein’s inequality, we
know that ‘(p”l (pk,n‘ ‘fl(Hl)T‘i (1)( —&-nT)dt’ <
Qlekll,, Ta- And furthermore, it suffices to show that
|e*sTa — 1] = 2|sin “&’d|. Therefore, hj, is bounded by

|h2n{ < lerll o (231n % + QTd) Let B = 2sin Q’;Td + QTy.

Thus, ', is bounded by |g! | < 215 el (1 o] < llexll,, 8116l
where ||| = maxy, ||@k]],- Then, we have the desired result. OJ

Bounded Low-Order Approximation of g The mixture of noise,
quantization and non-ideal foldings creates algorithmic challenges
for residue recovery. This necessitates the development of robust
recovery methods that harnesses the spatial-temporal structure of the
MC samples g;. To this end, next, we introduce the following lemma,
resulting in a low degrees-of-freedom approximation of gln :

Lemma 2. Let g (t) be a multiband signal defined in (1). Assume
ok € Ba is (M + 1)-th continuously differentiable. Then, for every
t € [nT,nT + LTy, g(t) satisfies that
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Proof. For every t € [a,b], ¢k can be expressed as

M ¢,<M>(L+b)

pr(t) =) (- )

where ¢ € [a, b]. Hence, we obtain that
M
0-"

Let ¢(t) Lof Z%:Opk,m(t — qr)™, where pg m,qr are found
by minimizing ||¢x(t) — @r(t)|,- Then, ¥t € [nT,nT + LTy,
©k(t) can be well approximated by @ (t), with error bounded

LP&MH)(C) t_ atbyM+1
(M+1)! ( T)

‘ < @Qp—apnMt?

Pr,m(t — q) m’ < vt 19kl

min
Pk,m>d



(a) Realization #1 (DR=4.30A)
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(b) Realization #2 (DR=13.56A\)
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Fig. 2: Hardware experiments. The signal entails K = 6 bands with sampling rate of 37 Hz (10x downsampling). We fix the sampling rate and conduct
2 hardware experiments with different dynamic range gain: (a) 4.30\ and (b) 13.56\. In all realizations, we demonstrate accurate reconstruction with

&2(g,g) < 2.8 x 1072

Algorithm 1 Robust sub-Nyquist USF Multiband Recovery

Input: Modulo Measurements y,l%n and spectrum support S(g)
Initialize &‘l o — =4

1: for: =1 to zmax 30

2:  Update &, [ via (8).

3 if (7) holds then

4: Terminate all loops;
5 end if

6 Update gfj” via (9).

7: end for

8: Reconstruct ¢g(¢) via Lemma 3.
Output: The recovered multiband signal g (¢).
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Fig. 3: Recovery MSE vs SNR. The result at each SNR sample is averaged
over 100 random realizations. The dynamic range is ||g||,, = 10A. Our
method offers accurate recovery up to a low SNR (17 dB).

-~ QL M+41
by |ler — Gkl < %H@ﬂ . Hence, we have that
o) = SIS e @ et | < flenlly, ma flon — Bl
which yields the results characterized in 6). O

Robust Signal Recovery Strategy. With Lemma 1 and Lemma 2,
the MC modulo samples yl can be decomposed as two parts:

1) Spikes: g, = 327" 4 ;[ — 7 5] and %,j € ZAZ;
2) Polynomial-exponentials: g; ] Zk o ckQ L edwnmT+iTa)
Qkn = Qu(nT +1Ty), and Qi is a polynomlal of degree M.

Q

, showcasing accuracy improvement compared to the conventional ADCs with €2(g, g) oc 4.2 x 1072,

In presence of distortions, we can only recover the signal up to a
f .

tolerance level of o (Qx + Q) Tyoy + o, ', which acts as a

regularization term. From (5), in ideal case, 7,,; € 2);Z. Hence, in

the real-world scenario, the joint recovery problem can be posed as:

. L-11 1 1)?

min E ’y —g +§n‘ , St (@)
1 1=0 |¥nn  Zn
9, Yn>Tn

Jn—1

l n . 1 ~1
e, = E iO[l — Tnj min — <o
=n =0 Yn,j [ "»]]7 Qs In gn . =X

~1 K-1 Ql
= Ck €
9, § :k:O k,n

Solving the constrained quadratic minimization in (7) enables the
inversion of non-linear folding on range, resulting in estimate of gl

pon(THTD) -y e 2N

Multiband Signal Recovery in Finite-Difference Domain. With g
known, we reconstruct multiband signal g(¢) via the following result:

Lemma 3. Let g (t) be a multiband signal defined in (1). Assume
miny, |wi| > 2. Given g' defined in (4). Let T = PTy, P € .
Then, g (t) can be exactly reconstructed if Tyq < ﬁ, N — oo,

L>K, P< g and A=

lely,

Proof. Denote the spectrum support of g by, S(g) Ux Sis
Si = {w||w — wk| < Q}. Denote by G the Fourier transform of
g, then, we have G(w) = 0,Vw ¢ S(g). It suffices to show that,
g is (Qx +Q)- bandlimited Since g € R, Ty < 7/ (Qx +9Q),
then S(g) € [— T T Z-]. From the Poisson summation, we have

l _—)PnwTy __ eJ P 2pm
D nez Ine 4 =3 erp BT G( 7). Hence, Vw €

! —jnwPT,
[_PL]}7%)7Z 26 I, we obtain that }° _,g e /"4
plr pr
P-1e P (2P —1) 2pm .
>0 TG( + 2 d) . From assumptions, we have
that 3 Ty < QK_m,s./t.rmnk lwe] — Q@ > ﬁ > Q.
Hence, this results in G (w) = 0,Yw € [-5F, P’} ), and the

Poisson summation thereby translates to, Znezﬁ _J"WP Ta

2plr

ZP - %G(uﬂr 2’”) Vw € [~57; pr; ). Since
A has a fully Kruskal-rank, the sampling pattern associated with
II. (nT + ITy) is thus universal [4]. This results in a linear system

def (QLT)MT! maxy|lo|
. 2MFT(M1)!

2The Kruskal-rank of a matrix A is the maximal number L such that every
set of L columns of A is linearly independent.

Iy o lleklley

and 072, is the variance of 7).



TABLE I: Summary of Numerical Experimental Parameters and Performance Evaluation.

Figure B fs L T4 A llgll.  SNR fr &2(g,8)
(kHz)  (kHz) (us) (V) V) (dB) (kHz)
— 18.06 34.48 47 0.20 5.68 56.84 15.00 [27.91,121.51,310.34] 1.04 x 10t
— 18.06 34.48 47 0.20 5.68 56.84 20.00 [2791, 121.51, 31034] 1.59 x 10~
— 18.06 34.48 47 0.20 5.68 56.84 30.00 [27.91,121.51,310.34] 2.26 x 102

TABLE II: Summary of Hardware Experimental Parameters and Performance Evaluation.

Figure B fs L Ty A 9]l oo fr &2(g, 8)
(Hz) (Hz) (ms) (V) V) (Hz)
Fig. 2 (8 21.04 37.04 23 0.60 043 1.89 [27.03,84.08,186.19] 1.22 x 1073
Fig. 2 (b) 22.04 37.04 35 040 043 583 [25.64,79.77,182.34] 2.77 x 10~2

of equations with at most K non-zero unknowns, since P < QLTd
The support of G can be found via S(g), leading to a unique
solution if the number of equations is larger than that of unknowns,
ie. L > K. With retrieved G (w),Vw € [-7, 7], g (t) can be
perfectly reconstructed via the methods in [5], [7], [20]. O

Algorithmic Implementation. The core of sub-Nyquist USF multi-
band recovery relies on solving (7), which is non-trivial due to the
structure and the constraints. To this end, we opt for an alternating
minimization strategy where the goal is to split (7) into two tractable
sub-problems, viz. that achieves robust recovery of v, , 7, and

that solves for gfl via low-order approximation.

Sieve # 1: Spike Estimation. We leverage a continuous-time

< l
— l Jn—1 V1,5 U(EL)
characterization ¢, = - T o) where
" ZJ_O l—e 9L ™ L V(le)

g = e’ and 15 = (1—e 2™ mi)y, /L. U and V are
trigonometric polynomials of degree J,, — 1 and J,, respectively.
Given estimate of g;, (7) translates into the spike estimation problem

. L-1], u ElL

wr X | -

and 2, (g) = 2\ | (¢ + A) /(2))] is the quantization operator where

lg] = sup{k € Z| k < g} is the floor function. The quantization

operator 2 (-) in (8) is applied to guarantee the on-grid amplitude

constraint «y,, € 2)\;Z in original problem (7). We refer the reader
to [29], [32], [33] for more details.

Sieve # 2: Polynomial-Exponential Projection. With s
structed from solving (8), the minimization on g essentlally boils
down to a convex optimization problem, which can be formulated as

L—1
ngﬂgm

where fl = y +§n Notice that, is a quadratic minimization
with llnear constralnts which can be solved efﬁmently In fact, (9) is
equivalently to project the estimate gn Lt gn into the polynomial-
. . ’ I
exponential function space spanned by {lme]“del}szJ‘igK We
terminate the iterations if the raw estimate, i.e. fl sausﬁes the

2

Jen=2(g —y ) ®

;M

recon-

2
l : l ~1
N gn’ ’ st n%}cn Hgn B gnHoo <O’ (9)

constraint in (9); otherwise, we update the estimate 0f g via (9).
An algorithmic implementation is provided in Algorithm I

III. Experiments

Numerical Experiments. We conduct numerical experiments to
demonstrate the robustness of the proposed method. We sample the
input signal (X = 6 bands) with dynamic range gain ||g||_ =

10X and 19x downsampling. In Monte-Carlo experiments, we add
white noise 7 on the modulo samples and gradually increase the
noise level from 35 dB to 15 dB, validating the robustness of
our sNyg-MB approach. Denote by % = B the bandwidth of
¢k, k € Ik in Hz. We use the mean-squared error (MSE) €2(g, ) =
N%) No_l lg(nTq) — g(nTq)| to measure the reconstruction accu-
racy. We plot the MSE varies versus SNR in Fig. 3. The experimental
settings and results are tabulated in Table I. We demonstrate that our
method achieves accurate reconstruction up to a low SNR value (= 17

dB) , which offers robustness and stability in real-world scenarios.

Hardware Experiments. To validate the robustness of our method in
real-world settings, we conduct hardware experiments based on .#/\—
ADCs that implements the sampling pipeline described in Section II.
The HDR input signal consists of K = 6 bands. For each experiment,
we simultaneously capture modulo samples from the multi-channel
M »—ADCs with tunable thresholds. We simultaneously plot the input
and output of the multi-channel .#,\—ADCs on the PicoScope 3406D
oscilloscope to obtain the ground-truth. We sample both the ground-
truth and modulo signal with 7-bit quantization resolution. We fix
the bandwidth 2Q2 (or B in Hz) and sampling rate f,, and increases
the dynamic range from 4.30\ (Fig. 2 (a)) to 13.56\ (Fig. 2 (b)).
The experimental parameters and results are summarized in Table II.
We plot the MC modulo sampling and reconstruction with dif-
ferent dynamic range in Fig. 2. Despite 10x downsampling, quan-
tization and hardware imperfections, our method achieves accurate
reconstruction in all scenarios. Moreover, we demonstrate that our
framework offers higher reconstruction precision with €2(g,g) <
2.8 x 1072, in contrast to the results using conventional ADCs
with the same bit-resolution with €x(g, &) o 4.2 x 1072, With
10x downsampling, 13.56x dynamic range gain and reconstruction
accuracy improvement over the conventional ADCs, these hardware-
based experiments showcase the high practical utility and robust
performance of our sub-Nyquist USF multiband method.

IV. Conclusion

In this paper, we have proposed a novel method for multiband
reconstruction from sub-Nyquist, modulo samples. Our approach
is based on co-design strategy. On the hardware aspect, we have
extended the multi-coset sampling architecture to the USF context
that enables sub-Nyquist folded sampling. On the algorithm aspect,
our algorithm performs HDR unfolding. Thanks to the customized
sensing pipeline, our approach achieves accurate multiband recon-
struction in real-world scenarios, offering 13x DR gain and 10x
downsampling. Our work unlocks new capabilities for the field, for
which its algorithmic machinery enables sub-Nyquist applications
such as cognitive radio and RF communications in the USF context.
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