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Sparse Deconvolution on the Continuum with Unknown Kernels*
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Abstract. In recent years, computational time-of-flight (ToF) imaging has emerged as an exciting and novel
imaging modality that offers new and powerful interpretations of natural scenes, with applications
extending to three-dimensional, light-in-flight, and non-line-of-sight imaging. Mathematically, ToF
imaging relies on algorithmic super-resolution, as the back-scattered sparse light echoes lie on a finer
time resolution than what digital devices can capture. Traditional methods necessitate knowledge
of the emitted light pulses or kernels and employ sparse deconvolution to recover scenes. Unlike pre-
vious approaches, this paper introduces a novel, blind ToF imaging technique that does not require
kernel calibration and recovers sparse spikes on a continuum, rather than a discrete grid. By study-
ing the shared characteristics of various ToF modalities, we capitalize on the fact that most physical
pulses approximately satisfy the Strang—Fix conditions from approximation theory. This leads to
a new mathematical formulation for sparse super-resolution. Our recovery approach uses an opti-
mization method that is pivoted on an alternating minimization strategy. We benchmark our blind
ToF method against traditional kernel calibration methods, which serve as the baseline. Extensive
hardware experiments across different ToF modalities demonstrate the algorithmic advantages, flex-
ibility, and empirical robustness of our approach. We show that our work facilitates super-resolution
in scenarios where distinguishing between closely spaced objects is challenging, while maintaining
performance comparable to known kernel situations. Examples of light-in-flight imaging and light-
sweep videos highlight the practical benefits of our blind super-resolution method in enhancing the
understanding of natural scenes.
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1. Introduction to time-of-flight imaging. The emerging theme of computational sensing
and imaging or CoOSI [10, 16] has catalyzed never-seen-before capabilities in the context of
imaging and vision. Some noteworthy examples are single-pizel imaging [25, 48], non-line-of-
sight imaging [55, 60], ultrafast imaging at a trillion [55] and a billion [28] frames per second,
and imaging of black holes [51]. In all such examples and beyond, the fundamental differ-
ence from the traditional viewpoint is the new mindset that altering the forward model of an
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imaging system enables new capabilities—one can co-design hardware and algorithms in pur-
suit of new advantages that cannot be harnessed by optimizing hardware or algorithms alone.

In the context of COSI, the hardware-software co-design approach has been particularly
fruitful for time-of-flight (ToF) imaging. A notable characteristic of ToF imaging is that each
pixel of the imaging sensor captures a scene-dependent time profile at a specific time resolution,
usually on a scale ranging from nanoseconds (ns) to picoseconds (ps). This technique, there-
fore, is also referred to as time-resolved imaging, highlighting its ability to capture detailed
temporal information within a scene (see Chapter 5 in [10]), as illustrated in Figure 1. In con-
trast to conventional imaging paradigms, ToF imaging offers numerous advantages that were
previously unimaginable. This is due to the fact that each ToF measurement comprises two
types of images: the conventional 2D photograph or amplitude image, and the unconventional
time-resolved, depth image. The advent of ToF imaging technology paves the way for novel
methods and applications in various domains, including computer vision [21, 34, 52], graphics
[32, 35, 61], autonomous vehicles, and biomedical imaging [5, 46]. Two concrete examples
that also serve as an experimental validation of our work (in section 5) are as follows.
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Figure 1. Diffusive imaging. (a) Ezperimental setup [13, 35]. A “TIME OF FLIGHT” placard is hidden
by a diffusive semitranslucent sheet between the placard and the ToF sensor. (b) Depth estimation from pizel
measurements via sparse deconvolution techniques [13, 14, 17]. The ToF kernel (i.e., or in (2.2)) is calibrated
and known prior to experiments. (c¢) Three-dimensional (3D) scene reconstruction from estimated depth param-
eters in (b). The main goal of this paper is to recover a 3D scene without preknown kernel information (refer
to Figures 8 and 10), aiming to eliminate the necessity for experimental calibration.
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(1) Diffuse imaging [8, 13, 32, 35]. As illustrated in Figure 1, here ToF imaging enables
recovery of objects hidden or obfuscated via diffusive materials; also see section 5.1.1.
(2) Light-in-flight (LIF) imaging [1, 29, 32, 35, 56]. In 1978 [1], Abramson pioneered LIF
using a holographic method to record the wavefront of a light pulse as it traveled
and scattered off a white screen. In a similar spirit, ToF measurements also enable
LIF imaging that involves capturing and reconstructing the trajectory of light as it
traverses and interacts with various objects in the scene, leading to completely new
pathways for scene understanding. This is another ToF imaging capability, covered in
this paper in section 5.2 (https://youtu.be/ffkc_z80gER).
Depending on the technology and temporal resolution, ToF imaging setups can be broadly
classified into three categories: (i) lock-in sensors [27] operating at nanosecond resolution,
(ii) single photon avalanche diode detectors [29, 37] operating at picosecond resolution, and
(iii) streak tubes [55] operating at femtosecond resolution. Among them, lock-in sensors
are notably popular for ToF imaging, largely because they are available as consumer-grade
technology, exemplified by photonic mizer devices and the Microsoft Xbox One’s Kinect,
making them widely used and accessible.

1.1. Fundamental role of sparsity and super-resolution in ToF imaging. In conventional
2D photography the scene is rich in its natural representation and described by low-level image
features, such as edges, corners, and ridges [26]. The resulting images are sparse in transform
domain, e.g., discrete cosine transform or wavelet basis. However, when the same scene is
interpreted from the perspective time-scales [32, 35, 61], the features are fundamentally differ-
ent and take the form of global and direct delays, interreflections, and subsurface scattering.
Mathematically, this translates to the fact that scenes are naturally sparse along the temporal
dimension. This is also clearly seen in Figure 1, where the time profile along a particular pixel
comprises two Dirac impulses. Clearly, in terms of the Shannon—Nyquist method of digitiza-
tion, acquiring such scenes would entail exorbitant sampling rates which may be technolog-
ically unviable, not to mention how expensive and challenging it may be to implement such
systems. That said, realizing that ToF measurements encode sparse features, super-resolution
(SRes) or the problem of recovering spikes from filtered kernels [17, 19, 23, 24, 42] turns out to
be the most appropriate setup for ToF imaging methods [4]. The main advantage of resorting
to such a flavor is that nonbandlimited objects such as Dirac impulses can be recovered from
filtered measurements, without requiring a sampling criterion [13]. Hence, resorting to SRes
formulation proves to be highly beneficial in lowering the hardware constraints.

1.2. Related work. In the existing literature, the ToF imaging methods via SRes formu-
lation can be broadly classified as follows. Stochastic approaches. The authors in [33]
proposed a Bayesian framework to find out the 3D scene parameters via evaluating posterior
probability distribution. Adam et al. [2] utilize Bayesian inference for the recovery of 3D scene
geometry, such as shape, illumination, and albedo. Optimization approaches. Kadambi
et al. in [35] formulated the time profile recovery with multipath interference as sparse de-
convolution and utilized an OMP (orthogonal matching pursuit) algorithm to solve for spike
estimation. In [32], Heide et al. posed the scene recovery as a temporal-spatial regularization
problem, encompassing both spatial and temporal regularized penalties. An alternating min-
imization strategy was utilized to split the principle problem into two tractable subproblems
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via proximal operators. Parametric approaches. Built on the sparse representation of ToF
measurements, the authors in [9, 13, 14] first modeled the inverse problem of scene recov-
ery as deconvolution, which essentially boils down to the spectral estimation problem [22].
Subsequently, Prony’s method is employed to super-resolve the parameters of the 3D scene.

1.3. Motivation for blind ToF imaging. By comparing and contrasting the mathematical
SRes [17, 19, 23, 24, 42] and ToF SRes [2, 13, 14, 32, 33, 35] communities, the key takeaways
from the existing art can be distilled as follows.

1. Significance of kernel calibration: A vital assumption in any SRes technique [17, 19, 23,
24, 42] is the knowledge of the kernel. In the ToF context [2, 13, 14, 32, 33, 35], this
translates to kernel calibration prior to conducting experiments (see Figure 1(b)).
Since ToF systems employ active sensing—where the illumination source is separate
from the imaging sensor—any alterations in illumination necessitate a recalibration of
the kernel related to illumination. Over the illumination system’s lifespan, physical
factors like temperature and optical setup changes may cause variability in the kernel.
From the perspective of solving an inverse problem, any discrepancy between the
calibrated kernel and ToF measurements can significantly degrade the quality of spike
estimation, thus limiting the adaptability and reliability of ToF imaging methods.
This highlights the importance of developing blind ToF methods that operate without
assuming the knowledge of the kernel [3].

2. Community divide: With the exception of parametric approaches [9, 13, 14], most ToF
SRes methods do not yet leverage “off-the-grid” model for spikes or Dirac impulses.
This means the unknown sparse signal is presumed to “live” on a discrete grid, an as-
sumption that may not reflect reality. Conversely, a notable advancement within the
mathematical SRes [17, 19, 23, 42] community has been the ability to recover spikes on
the continuum. We believe this gap in understanding is largely due to the minimal in-
teraction between the two fields. Moreover, state-of-the-art recovery techniques might
not directly transfer to ToF imaging, as they are not tailored for handling large-scale
measurements, which can extend to tensors. This calls for the creation of efficient
algorithms capable of modeling Dirac impulses continuously and managing the volu-
minous data produced by ToF sensors. Crucially, the effectiveness of these approaches
hinges on their validation and benchmarking through real-world experiments.

1.4. Contributions. The main goal of this paper is to develop a flexible, robust, and
efficient blind ToF imaging method that allows for super-resolved 3D scene recovery in realistic
experimental setups, independent of any kernel calibration. We outline the contributions of
our work as follows:

e Mathematical model: Leveraging our experience with ToF imaging [10, 13], we
propose a generic model for a ToF imaging pipeline in which the Dirac impulses' are
modeled on the continuum.

Different from previous works in computational imaging and computer vision/graphics,
we assume that the ToF kernel is unknown and is equipped with Strang—Fix properties.
This is to say, the shifts of the ToF kernel reproduce exponential-polynomial functions

"We consider continuous-time spikes in terms of distribution.
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(see (3.1)) [50]. This conceptualization is a key enabler for blind ToF imaging in that
Strang—Fix conditions lead to
(i) a flexible choice of unknown kernel, covering the well-known modalities, e.g.,
lock-in sensors [27] and time-correlated single photon counting (TCSPC) systems
[40]7
(ii) a key continuous-time recovery of sparse spikes.

e Recovery algorithm: We design a robust, efficient, and scalable algorithm that
achieves fill 3D-stack processing of ToF measurements. We resort to a nonconvex
optimization scheme to estimate the unknown kernel and 3D scene parameters via an
alternating minimization strategy, which we validate in various experimental setups
and datasets.

e Experimental validation and benchmarking: Through a series of 10 experiments,
we benchmark our proposed approach against existing methods with kernel calibration,
which serves as a ground truth, thus showcasing the comparable performance in various
real-world settings, such as

(i) looking through diffusers (see 5.1.1),
(ii) large-scale data processing (120 x 120 x 3968 x 4 image tensor; see section 5.1.2),
(iii) intertarget separation of 0.20 cm (see section 5.1.2),
(iv) high-order imaging (see section 5.1.3), and
(v) LIF imaging at nanosecond scale (see section 5.2).
These experiments corroborate the adaptability, robustness, and SRes capability of our method.
In the absence of kernel calibration, our setting takes the form of a blind sparse deconvo-
lution (BSD) problem. In the prior art, BSD was studied in various flavors including BSD via
multichannel [36, 58] and single-channel [38, 59] methods. However, such BSD approaches do
not translate to the ToF context due to (1) kernel priors, e.g., incoherence [39], nonnegativity
[41], and short-support [59], (2) the assumption that Dirac impulses or spikes lie on a grid
[36, 45, 59], and (3) the large-scale data that arises in ToF imaging [13, 35]. Finally, we find
that prevailing works on BSD are not designed to handle the ToF pipeline. The lack of ex-
perimental validation of such approaches not only creates a gap between theory and practice
but also makes benchmarking of these approaches very challenging.
Notation. The sets of integer, real, and complex-valued numbers are denoted by Z, R, and
C, respectively. The set of N contiguous integers is denoted by Iy ={0,...,N —1}, N € Z*.
Continuous functions are written as g(t),t € R; their discrete counterparts are represented by
gln] = .9(t)|t=n1, n € Z, where T > 0 takes the role of sampling period. Vectors and matrices

are written in bold lowercase and uppercase fonts, such as g = [g[0],...,g[N — 1]]Te RY
and G = [gnym]nmeeﬂ%fé RN*M " The L,(R) space equipped with the p-norm or [[[lr,, () is the

standard Lebesgue space. For instance, L; and Lo denote the space of absolute and square-
integrable functions, respectively. Spaces associated with sequences are denoted by /¢,. The
max-norm (L) of a function is defined as ||g||cc = inf{co = 0: |g(t)| < co}; for sequences, we

use, ||gl =max;, |g[n]|. The Lo-norm of a function is defined as ||g||2 = 1/ [ |g(t)|?dt, while for

sequences, we have ||g||2 = 2711\/;01 |g[n]|2. The £y-norm of a sequence denotes the cardinality

(i.e., the number of nonzero entries) of the sequence. The inner-product of two functions f, g €
L, is defined as (f,g) = [ f(¢)g*(t)dt, while for sequences, we have (f,g) = Zr]:[:_ol [n]g*[n].
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The vector space of polynomials with complex coefficients and degrees less than or equal to
K is denoted by Py, for instance, Qu(z) = 25:0 hiz* € Pg. The N-order derivative of a
function is denoted by 8t(N) g(t). The space of first-order continuously differentiable, real-
valued functions is denoted by C(R). For sequences, the first-order finite difference is denoted
by (Ag)[n] =gn+1] — [n] For any exponential type functions |g(t)| < AePl!l, its Laplace
transform is defined by L£g4( fo e stdt,s € C. For any function g € Ly, its Fourier
transform is defined by g(w f g(t Jwtdt. For sequences, the discrete Fourier transform
(DFT) of a sequence g € ¢; is denoted by glm] = Zf:[_ol g[n}e*J%T"m Let W4 and V4 denote
the N x M Vandermonde matrices WN =[&y" m];neeﬂ%f,VM [fn m]nmgeﬂ%l, (=€~ The
DFT of g can be expressed as g = WX ~&- The Gram matrix of G is defined as G(G) = G'G.
The shorthand notation for diagonal matrices is glven by Zk(h) with [.@K(h)] ek = ke, -

The mean-squared error (MSE) between x,y€ RY is given by £(x,y) = & Ly |:c[ 1 —y[n]|?.

2. Image formation. Let r =[z,]' denote a point in the Cartesian coordinate where ()"
is the transpose operation. ToF sensors are active imaging systems that probe the 3D scene of
interest with some time-localized kernel [46, 49, 55, 57|, denoted by p,(t) at a point r. Based
on the choice of kernel, ToF imaging can be classified as time-domain and frequency-domain
ToF setups.”

The emitted signal py () interacts with the 3D scene characterized by the spatio-temporal
scene response function (SRF) sp(¢,¢'). In the case of multiple reflections (see Figure 2), the
SRF is given by

K-1
(2.1) se(t,t) =) Tolk]6(t—t —m[k]),
k=0

where §(-) is a Dirac distribution and {I';z[k], 7¢[k]}rer, are the corresponding reflectivities
and time-delays (7:[k] = 2d;[k]/c) induced by K light paths at point r.?

In several practical scenarios, the SRF can be written as a shift-invariant function, s.(¢,t') =
sp(t — t'), which reduces the measurements to a convolution format. This is because the
interplay of the emitted signal with the 3D scene results in the reflected signal given by
re(t) = [ pe(t)se(t,t')dt’ resulting in convolution, 7y (t) = (pr * s¢)(f). The reflected signal is
measured at the ToF sensor through its electro-optical architecture, which is described by its
instrument response function (IRF), denoted by . (¢,#').* This leads to the continuous-time

2While this paper is pivoted around time-localized kernels, to keep the exposition as general as possible, we
will adhere to the generalized model described in our series of papers [5, 6, 7, 13, 14]. This model is general in
the sense that it not only consolidates both time and frequency domain approaches but is also compatible with
the broader theme of the ToF principle used in areas like terahertz [44], ultrasound [53], and seismic imaging
[20] as well as optical coherence tomography [15, 47] and LIDAR [18].

3Note the SRF may be described more generally where s(t,t') is a Green’s function of some partial
differential equation [5] or simply a transfer function. For instance, in the scenario of fluorescence life-
time imaging, se(t,t') = s (¢, t') + sp° (¢,t') for which sP**"(¢,¢') is defined in (2.1) and represents
a delay of 7x[k] due to the fluorescent sample’s placement at depth dp[k] meters from the sensor, and
P (t,t') = arexp(—(t — ' — 7)/A)h(t —t' — 1) where a, and X are emission light strength and lifetime
of the fluorescent sample, respectively, and h(t) is the Heaviside step function.

4In the absence of time-resolved perspective or steady-state scene assumption, the IRF is equivalent to the
spatial point spread function.
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Figure 2. Pipeline for LIF imaging (see hitps://youtu.be/[fkc_2809E8 ). Top row: Experimental setup cap-
turing light’s interaction with a scene, consisting of a mannequin head positioned between a diffusive surface
and a backdrop wall. Bottom row: Using a ToF camera, we visualize the light’s progression across different

time instances marked by “e,” highlighted by visible light’s spectrum colors coding the ascending time sequence.

Initially, light encounters the diffusive sheet in the early time-slots, i.e., (i) (blue) and (j) (green). Light then
moves over the mannequin and ultimately reaches the back wall, as shown in frames (q) (yellow) to (t) (red).
The LIF accurately maps the 3D geometry of the scene. The full LIF time slices are shown in Figure 14.

measurements defined by g¢r(t) = [r(t)¢e(¢,¢')dt’. Again, in practice, the IRF ¢y (t,t') is
typically shift-invariant, i.e., wr(t,t ) =p(t — t’ ). Consequently, the measurements impinging
on the ToF imaging sensor simplify to g,(t) = (ry * ¢y)(t), which can be further simplified as

(2.2) g ()= (sexor) (1) and  e(t) S (%) (1),

where ¢, can be interpreted as the kernel in the spirit of SRes [17] or the signal processing
perspective. Finally, uniform sampling of the continuous-time input results in per-pixel digital
measurements,

(2.3) gr [n] = gr ()] i—pr = ZF Jr (nT — 72 [K]),

where T' > 0 is the sampling step and usually of the magnitude of 60 to 100 picoseconds (see
section 5). A global view of the image formation process is described as a mathematical block
diagram in Figure 3.
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Figure 3. Block diagram for ToF image formation process. The goal is to estimate sy from {gr[n|}nery -

Goal. Starting with {gr[n]}nery only, our goal is to recover sp(t) and ¢y(t) from possibly
imperfect and distorted measurements.

3. Super-resolved ToF imaging with Strang—Fix properties. Due to the shift-invariant

property of the SRF and IRF, the ToF measurements depend on the kernel oy (%) 22) (pr *
¥y)(t). The literature around the topic of ToF imaging is largely focused on the data model
with discrete sparsity so that sparse recovery techniques can be leveraged [32, 35, 43, 52].
However, such approaches artificially constrain delays on a discrete grid, i.e., {7y [k]}ke1, € TZ,
which is an artifact of the data model. We believe that this is the reason why SRes methods
have not been widely reported in the ToF literature.

In developing a blind ToF imaging strategy, an effective starting point involves abstracting
properties of o, (t) (2.2) common across various ToF modalities [5, 6, 7, 13, 14, 32, 35, 40, 52],
such as lock-in sensors and TCSPC systems. Our observation, based on various experimentally
calibrated kernels used in ToF imaging [5, 6, 7, 13, 14, 32, 35, 40, 52|, indicates that these ker-
nels exhibit shared characteristics. By identifying and abstracting these common mathemati-
cal properties, we can pave the way for blind ToF imaging strategies. Specifically, our analysis
of the literature highlights these shared features, setting the foundation for our approach.

o Time-localization: py(t) =0, t ¢ D C R, where D is a finite, contiguous interval in the
time domain.
e Smoothness: ¢y € C(R) is continuously differentiable.

Toward kernels with Strang—Fix properties. Given the nature of ToF kernels, a

weighted linear combination of the kernel reproduces the prototype function,

thefy?t, heN and v, €C,
and hence, implicit parameterization in terms of the= %" captures the features of the kernel
in a flexible yet compressible manner. As we shall see shortly, this compressibility proves to
be advantageous in our blind ToF context. Similar properties have been widely studied in the
wavelet and approximation theory, where they arise in the context of Strang—Fixz conditions
[50, 54]. In particular, such kernels satisfy the property

Vm

(3.1) the "4 :Zﬂm,n,har (t—nT), mely and h € Iy,
neL

where ©.(t) = ¢r(—t) and {ftm nn}nez are the exponential-polynomial reproducing coeffi-
cients. A visual illustration of (3.1) is shown in Figure 4. In other words, {t"e ™7 },.cr,,
belongs to a shift-invariant space spanned by shifts of ¢,. For this to work, the kernel ¢,
must satisfy what is known as the generalized Strang—Fix conditions [54]:
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(b) Visualization of the moment coefficient matriz U in (3.9).
3.2) MWL, (v) 40 and ML, (v)  =0,1€7/{0}, melyand h €Iy,

V=Vm V:Vm'i‘]L;

where L, (s) denotes the Laplace transform of ¢r and M in (3.1) is the order of the kernel.

The main advantage of the parametrization in (3.1) is that the continuous-time unknown
kernel (¢r(t)) can be expressed in a low-dimensional, discrete representation, {fim nh}tnez
which makes the formulation of our optimization method efficient and tractable.

Perfect recovery of SRF with known kernel. Before developing blind ToF imaging
methodology, we consider the intermediate step where the kernel is assumed to be known. In
this setting, we consider the following two fundamental questions: (1) What is the mathemat-
ical criterion for perfect recovery of the SRF? and (2) Is there a constructive algorithm for
recovery? In what follows, we will demonstrate an SRF recovery method that relies on trans-
form domain characterization of spikes and leverages spectral estimation. This intermediate
step is similar to previous works [17, 22, 54].

Proposition 3.1. Let the kernel op(t) = 0,t ¢ D - LO,T), be known, and further, let us
assume that ¢y (t) satisfies Strang—Fiz properties, e~ 1 =Y o umn@p(t —nT), m € Ip.
Given the measurements defined as ge[n] = (sy * r)(nT') = i_ol Lrlk]oe(nT — 1 [k]), then
the SRF sy(t) = Zi{:_ol Tp[k]o(t — 1e]k]) can be recovered from N = 2K samples.

Proof. As detailed in (3.9), Lemma 3.2, the exponential reproducing coefficients
{#m,n}Z%fVM can be computed given ¢,. With coefficients {an}%%ﬂw known, let us define
exponential moments,

N-1 23) N-1 K-1
Ye[m] = fimngre[n] = Z Hm,n Z Ly [k] o (T — 71 [K])
n=0 n=0 k=0
K-1 N-1 3.1) K-1 ~
(3:3) =D Dok Y tmae (e [k] =nT) =" ) Tifkle ™M,
k=0 n=0 k=0
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which is a finite sum of K-complex exponentials. Let v, = ]QmT”,m € Ips. The unknown
frequencies in (3.3) can be found by using Prony’s method as follows. Let hy [m] be the filter
with z-transform,

K K-1
(3.4) He(2) = Z him]z"™ = H (1 —upz™b), up = e "M and H, € P,
m=0 k=0

where {ug }rer, are the roots of Hy since Hy(uy) =0,k € Ix. Then, h[m] annihilates y, [m] or

K K-1 K
(3.5) (hoye) [m] =D hllyelm — 1) = T[] (Z h{l]uﬁ) up' =0.
=0 k=0 =0

The annihilation filter {h[m|}mer,,, can be found by solving a system of linear equations
in (3.5) while {7[k]}rer, can be obtained by computing the zeros uy of the polynomial H,
constructed in (3.4). The amplitudes {I'y[k]}rer, can be computed via least-squares since
both {yr[m]}mer,, and {7[k]}ker, are already known. The problem can be solved as soon as
there are at least as many equations as unknowns, i.e., N > 2K samples for estimating 2K
unknowns {T'v[k], 7 [k]} kel - |

Until this point, we have seen that kernels that satisfy Strang—Fix properties can lead
to sparse SRes recovery. That said, it still remains to justify why ToF kernels can repro-
duce exponentials and what is a numerical method to compute the exponential reproducing
coefficients {an}?neé[ﬁ -

ToF kernels satisfy Strang—Fix conditions. In this part, we demonstrate that the
common features of the ToF kernel, i.e., time-localization and smoothness, mathematically
result in a decaying Fourier spectrum, and thus the Strang—Fix conditions in (3.2) hold ap-
proximately. More specifically, we have the following:

—e Time-localization: Since the kernel satisfies p,(t) =0, t ¢ D C R, we can express oy ()

as

2mrt 1 T 2mwt
(36) r(t)= @rlmle’ ,¢r[’m]—/ pr(t)e™” = dt, and 7 > max |7y [K]|.
T Jo ,r
meZ

—e Smoothness: Let ¢, € C(R) be a time-localized kernel with ¢ (0) = ¢ (7);” then its
Fourier series coefficients decay as frequency increases, i.e.,

(3.7) B lmll < s |of e 0 me /01

A consequence of these two properties is that {@r[m|}mez contract to zero as |m| increases,
ie.,

(3.8) Ve>0,3M € NT = |¢, [m]| <e€,|m| > M

SWithout loss of any generality, we use the boundary condition to simplify the result in (3.7), which is a
standard result in Fourier analysis.
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and hence ¢, is well approximated by a finite number of Fourier series coefficients. That is to
say, (3.8) implicitly mimics Strang—Fix conditions in (3.2) (H = 0) since for every |m| > M, we
have |@e[m]| 20 = |Ly, (22%)| =0, with an error bounded by 77—} pr(t)]||oc. Hence,
oy approximately satisfies the Strang—Fix conditions in (3.2).

Computation of exponential reproducing coefficients. Given the kernel () =
(pr*p)(t),t €[0,7), we now present an efficient method to compute exponential reproducing

coefficients.

Lemma 3.2. Let the kernel or(t) =0,t ¢ D C [0,7), be known, and further, let us assume
that e (t) satisfies Strang—Fiz properties, e~ 1 = Y onely MmnPe(t —nT), m €Iy, Let vy, =

ijT",m €ly. Then, the coefficients {umm}?eeﬁv”’ are given by
1
(3.9) U= N@K_l (@) Wir, U= [l andt=NT.
Proof. From the exponential reproduction properties in (3.1), we obtain that
T N-1 we @1y [NT .
(3.10) / Z PPyt —nT)eT dt "= / eV T dt = 76 [l —m],
(" 0
where ¢[-] is the Kronecker delta sequence. Since v, = jmT“,m €Iy, then ¢, satisfies that
T t
(3.11) / G, (t —nT)eT dt =7, [[] ™.
0
Hence, combining (3.10) and (3.11), we have that
S N-1 . N-1
(3.12) / Z [ @y (t —nT)eT dt =T Z tmnpr ([ € =710 [l —m], [,m €Iy,
0 p=o0 n=0

which can be algebraically rewritten in matrix form as UVY 2k (¢,) = +1, where I € RM*M
is the identity matrix. By simplification, we eventually have that

1 1.
U = N @Kl (901‘) W]]\V/[
(MxN) (MxM) (MxN)
1 g o o
(3.13) U= 2 (@) Wiy where (25 (@), = P [ u

4. Blind super-resolved ToF imaging. In the intermediate scenario of a known kernel,
we demonstrate that the SRes ToF imaging can be achieved by employing the exponential
reproduction properties of the kernel. In this section, we investigate the blind ToF imaging
methodology that allows for adaptive estimation of both the SRF and the kernel. In the
absence of kernel calibration, our setup takes the shape of a BSD problem, which is generally
challenging to solve due to its ill-posed formulation. In order to tackle this problem, we opt for
an alternating minimization framework that splits the BSD into two tractable subproblems,
as described in Figure 5.
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Continuous-Time ToF Sensing Model (Section 3)
gr [n] = 25;01 Ly [K] or (0T — 71 [K])

\4
Discrete-Time Sensing Model (Section 4)
Ir [n] = (Spr ® dr) [n]

Sub-Problem P1
Spike Estimation

Sub-Problem P2
Kernel Recovery

dr[”] = Pr( Kf)/Qr( 1’\'/)7 .
Py € Pk_1,Q; € Px ok = (5(Ta,)) " Th &

AV =1, RV 7y (ayvEH

. . . 2
BY =T, RVVE ol Y, a1} = argmin [u, + Alq, - BL”er
r ’ r dr 2
w =g — Ty, (5(Ty,) ' T, g, - L 2m (o0l m0y)* Qi+ (om0
. r or subjectto 5= [ (Qr (G )) QY (e7)dh =1

B N —1
RV = (7(ViTa)
— H
a4’ = (9(T,,) ' T, &

Figure 5. Block diagram of the proposed blind ToF imaging methodology. In the absence of kernel calibra-
tion, our setting takes the form of a BSD problem, where we split it into two tractable subproblems: that

addresses recovery of dr[n] via continuous-time spike estimation (see section 4.2) and that solves for ¢r[n|
utilizing least-squares fitting (see section 4.3).

4.1. Sparse model for ToF measurements. We first focus on a special subset of Strang—
Fix kernels, i.e., bandlimited kernels. This scenario reveals an exact model that relates dis-
crete ToF measurements {gy[n|}ner, to a continuous-time spike representation. When the
bandlimitedness constraint is relaxed, we are left with an approximate model which, as shown
via experiments, serves as a compelling match to real-world scenarios.

Proposition 4.1. Let the kernel oy in (3.6) be bandlimited, i.e., pr[m]=0,|m|> L. Then,

K—-1
gr[n] = (sr * @) (nT) = Ly [k]pr (T — 71 [K])
k=0
_ aet 1R Te [K)(1 = (un)™) _ Pel(€R)
(4.1) =(or®dy)[n] where dy[n]= N 2 (1 —unel) = Qe
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. . 3.4) —s2m
and where ® denotes circular convolution, Py € Px_1,Qr € Pk, uyg 34 e s Tr[k}, and £y =

27n

eIN .

Proof. Our starting point is the low-pass structure of the kernel ¢, resulting in

(4.2) r [n] = @r (t)],—pp = {@x(t), fL(t —nT)) ,n €I,
where fr1,(t) =sin((2L + 1) wt/7)/sin(7t/7T) is the low-pass filter.

Let @y denote the DFT of ¢,. We show that the DFT coefficients {@y[l] }1er,, and their
continuous counterpart {@y[l]}er,, are linearly dependent, since

N-1 No1
Bl =Y el <‘Pr(t)7 > 2 e‘f"’i”efz”%"”>
n=0

n=0 |m|<L
—j2mmt _y2Lmt (3.6) o
(4.3) = (prlt), >0 01— m] ) = (er(0),e ) el
Im|<L
Similarly, we have gi[l] = 7g:[l] where gp[m] =1 [ gr(t)e™7"5 dt. Morcover, notice that
. K1
9x(1) = Z gelmle’ " = Z Uy [k] or (t — 7 [K])
meZ k=0
K-1 —
=2 <¢r[m] > Teli]e? ™ ) e
mez k=0

Hence, gy[m] can be expressed in terms of ¢p[m] and {Ty[k], 7¢[k] rer, as

K-1
2mm Ty [k]

(4.4) Gelm) = Ge[m]se[m], Se[m] =D Telkle? =, meZ,
k=0

Combining (4.4) and (4.3), we eventually derive the interplay between g, and @, as

K-1

(4'5) Jr [l] =T0r [l] = Qprmgr[l] =@r [l] Z Ty [k] e’
k=0

20Ty lk

[k]
- L lely.

(4.5) can be recast in the time domain, which gives rise to a sparse representation

1 N-1 1 N—-1N-1
gr[n] = N - gr[l] Kfl N ; 7;) g@r[u]f;,u@r[l] Rfl
N-1 1 N-1 N—-1
(4.6) =" elul (N > érm«sx““)'l) = > eelulde[(n = 1) oa ]
u=0 =0 u=0
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Dirichlet Kernel (Real Part)
Dirichlet Kenel (Imag. Part)
—_ @ Real Samples
g 05 @ Imag. Samples
‘q—; — Spike to be Estimated
°
2
3 O
£
<
-0.5
I

0 1 2 3 4 5 6 7 8
Sample Index

Figure 6. Visualization of dr in (4.1).

where mod denotes modulo operation and d, is parametrized by {7:[k],Tv[k]}rer, (see
Figure 6) as

1 = (4.4) 1 R phly 21 (k]
defn] == D sy = < S Dk & (=)
1=0 k=0 1=0
wn N MO @) PR b p o cp
* kzo N(l—Uké}r\L[) Qr(f%)’ r K—l’ r K-
In the above, Q, is related to Hy in (3.4) as Qe(27') = Hp(2) <= Qr(u;, ') =0,k € Ix. [ ]

When considering the ToF kernels discussed in section 3, the model in (4.1) thus becomes
an accurate approximation due to the decaying Fourier spectrum of the kernels, as shown
in (3.7). This enables a flexible and practical framework that leverages the common kernel
characteristics and recovers sparse spikes on a continuum. More specifically, on the one
hand, this derived model matches the various ToF modalities, which we validate via extensive
hardware experiments in section 5. On the other hand, this model leads to a tractable and
efficient optimization method for the SRF and kernel recovery. Consequently, in the presence
of distortions, e.g., quantization resolution, system noise, and interreflections, the blind ToF
imaging problem can be posed as

. Pr(€X)
4.8 min r— oy ®dy Z,S.t.d n|= N
(48 min g~ e ® il st deln] =

What makes the minimization in (4.8) nontrivial are the structure and the constraints of the
setup. In order to address this problem, we employ an alternating minimization strategy where

the goal is to split (4.8) into two tractable subproblems: that addresses the recovery of
Py, Qr via nonlinear model-fitting and that solves for ¢, via least-squares fitting.

, Pre€Pg_1, Qr € Pg,nelyn.

4.2. Subproblem P1: Continuous-time spike estimation. Assuming that ¢, is known,
it remains to estimate P, Q, by solving the following quadratic minimization:

. Pr(€R)
4.9 P1 min ||gr — ¢, ®dy 2, s.t. dpln| = N
(49) [P} min lgr — ¢r ® il "= Qo)

, Pr € Pg_1, QrEPK,TLEHN.
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The bilinearity of convolution operation results in
¢y ®dy =Ty, dr, [Tsor]m,n = @r[(M — 1) mod N]-
Then, in (4.9) translates to

N-1 N-1

. B Pe(£3)
(410) FI,E& —~ gl‘[m] T;] [T‘Pr]mm Qr(gxf)

As solving (4.10) is challenging due to its nonlinearity, we opt for an iterative strategy by
constructing a collection of estimates for Py, Q. and selecting the one that minimizes the

MSE of the measurements via (4.10). These estimates {P[j i , Qr b1 } are found iteratively by
bl

solving the following approximate problem (since Q¢ ~ Q;):

N-1 N-1 [0] n " 2
1 dr Qr - Pr
min up[m] + Z [T%]m,n [n] ([ZN) (3]
Qe 2 )
N—-1
where u,[m)] Z ],
(4.11) d = (G(Ty) ' Thge, €L

where dLO} is an initial estimate of d, and the resulting estimation error is characterized by
the residue entry u,. This structure ensures that the solution to (4.11) minimizes the model-
fitting error defined in (4.9). Different initialization of QLO] results in diverse estimates of QLj ],
improving the accuracy and robustness of the algorithm. Here, we provide a deterministic
initialization strategy: we pick the K most prominent peaks of d[ ] [30], which provides the
roots of Qr] as well as the polynomial coeﬂﬁments It is possible that the stopping criterion in
(4.20) may not be met for this choice of Qr after reaching the max1mum iteration count jyax.
In such cases, the algorithm is restarted with random initialized Qr that follows independent
and identical unit Gaussian distributions.

Having estimated Q, and P, spike locations 7 [k] are obtained by roots(Qy) — u;l since
Qr (u,;l) =0. The corresponding amplitudes I'y[k] are obtained via least-squares,

NuPy (u;l)
(1—ul) 88Q, (2)

(412) Tr[k] = —%lm(log(uk)) and Fr[k] = —

-1
2=y

With {7:[k], T [k] t kel , dr can be reconstructed using (4.1) and 3D SRF can be recovered via
(2.1).

Algorithmic implementation. We provide an algorithm for (4.11). The trigonometric
polynomials P (&%), Qr(€Ry) in (4.11) can be algebraically written as

[Pe(En)] = Vﬁpr and [Qr(&n)] = VJI\<7+1qI‘7
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where p, and q, are the coefficients of P. € P 1 and Q; € Px. Assuming the estimate qu ] of
qr at iteration-j is known, the minimization at iteration-j + 1 can be reformulated in matrix
form as

ur+A£:j}qr Lj]pr

7

(4.13) {p[rj+1] ) qu+1]} =arg min ‘
Pr.qr

]

where the entities Ay’ B[rj }, and u, are respectively given by

(4.14)
A[ Jl _ T R[J]-@K(dLO])V][\(IJrla B[J] T R[J]vK u, _Zlgl' _ T%F (g (Tgor))_l T:‘p,gl‘a
and in the above, the variables RY = <@K(Vf,+1qy])> , and al = (G (T%))_1 T:)rgr.

We adopt a normalization constraint below to ensure the uniqueness of the optimal solution
o (4.13),

(4.15) 1/(]%( e ‘39))* Fr ey ag =1,

2

where (-)* denotes the conjugation operator and QLO} is the initialization of the algorithm.
Consequently, the quadratic minimization (4.13) can be posed as

. . . 2
(4.16) {pV™! g/} = argmin ‘ur+A[rJ]qr—B[r”pr ,

Pr,Qr

2m * .
subject to 21/ (Q[ro](efje)> QL]H](efjg)dQ: 1

™ Jo

for which its optimal solution can be found by solving the following system of linear equations:

[i+1] [0]
(C[]]> X[O] [ [J+1]] B
V=

i]\H i+ _ |ar (0] _ |qr
(CL]]) ur] and Xr [ [+1] | Xe' = [ 0 ] ’
0

(4.17)
1 4 .
C¥l = (-aY, B,

where qLO} are the coefficients of Q[ro] € Pk and A\ is the Lagrange multiplier such that the

normalization constraint (4.15) is satisfied.’

4.3. Subproblem P2: Kernel recovery. With d, known from the method in section 4.2,
the minimization on ¢, essentially boils down to the least-squares problem, resulting in the
solution

(4.18) ¢r=(G(Ta,) " T &

5For each initialization qLO], we update the trigonometric polynomial coefficients q[r] +1 until the stopping

criterion (4.20) is met. If (4.20) is not met for certain choices of q[] 1 after reaching the maximum iteration
count jmax, we restart the algorithm with a different initialization.
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Stopping criterion. We initialize the proposed method in Algorithm 4.1 by computing
(4.19) o) =Re (VN (Zk(e™)Whg)),  w~N(0,1),

which is a reasonable initialization based on kernel features. Using (4.13), we then estimate
{me[k], Tx[k]}ker, via (4.12) based on which we refine ¢, via (4.18). We use

(4.20) lgr —¢r ®dif, <o

as our stopping criterion, where o represents the data distortion level. In other words, we can
only recover the signal up to a tolerance level of 0. Iterating the method offers robust estimates
with SRes capability, which is validated via hardware experiments. Empirically, 10 random
initializations and jmax = 20 are sufficient to obtain an accurate solution that satisfies the
stopping criterion in (4.20), provided that the spikes {7y[k]}rer,. are relatively well-separated.
In the challenging scenarios of resolving closely located spikes, more restarts with different
initializations (= 20) are required to find a reasonable solution that fits the ToF data within a
certain tolerance level 0. We would like to point out that the algorithmic complexity can be
potentially improved by (1) leveraging algebraic structures of matrices T, ,Tq, and shared
features of ¢,, (2) optimizing numerical calculation and implementation, and (3) utilizing
effective dimensionality reduction techniques. We tabulate the algorithm run-time in the last
column of Table 1. The algorithm is summarized in Algorithm 4.1.

While our method assumes the model order (K in (2.3)) is known, this is not strictly
necessary. A practical approach leverages the underlying physics of the imaging process. Since
light reflections decay according to the inverse-square law, for K > 3, the reflections are likely
submerged in the noise floor. Thus, the algorithm can be implemented with K = 4, where
any spurious spikes from overestimating the model order will reflect system noise. These will
correspond to relatively smaller coefficients I'y in (2.3) and can be removed through hard-
thresholding. Alternatively, o in (4.20) measures the quality of fitting. Hence, one may
develop a method that progressively fits the data until the stopping criterion (4.20) is met.
Last, algorithms such as SORTE’ [31] can also be combined with our approach to incorporate
model-order estimation.

Table 1
Hardware based experimental parameters and performance evaluation.

Figure Exp. no. r K T Tr K] r [k] Ty [k] Tr [k] MSE PSNR  Run-

(#r, @y) time

(x10—12 (x10~8 sec.) (x1078 sec.) (dB)  (s)
sec.)
Known kernel Blind £ (Tp,Tr ) E(Tp,7r)

Figure 8 1 [6060] T 2 70 [1.19,0.23] [8.45,9.44] [1.19,0.23] [8.44,9.44] 2.31 x 1075 1.87 x 1074 43.24 35.88
Figure 9(a) Il-(a) [6060]1 2 96.15 [0.86,0.52] [3.03,4.19] [0.86,0.53] [3.02,4.19] 3.57 x 107° 1.16 x 104 41.93 37.07
Figure 9(b) II-(b) [6060]1 2 96.15 [0.64,0.54] [3.23,4.20] [0.66,0.53] [3.21,4.20] 1.69 x 10~% 1.40 x 10~% 40.29 36.63
Figure 9(c) II-(c) [6060]' 2 96.15 [0.48,0.59] [3.42,4.19] [0.58,0.46] [3.43,4.18] 1.35 x 1072 7.13 x 107° 39.71 117.54
Figure 9(d) 1II-(d) [6060]' 2 96.15 [0.34,0.58] [3.64,4.20] [0.48,0.43] [3.62,4.20] 2.13 x 1072 1.90 x 10~4 39.18 122.32
Figure 13(b) III-(a) [5070] 3 70 [0.70,0.44,0.13] [8.44,9.65,10.95] [0.66,0.48,0.16] [8.44,9.65,10.95] 1.50 X 10~ 3 1.57 x 10~ ° 36.33 114.97
Figure 13(c) II1-(b) [4560]1 3 70 [0.29,0.36,0.21] [8.51,9.71,11.08] [0.28,0.36,0.23] [8.53,9.74,11.08] 1.52 x 10~ % 4.70 x 10~% 36.22 106.66
Figure 12(b) IV-(a) — 2 6.1 [1.34,1.72] [1.11,1.24] [1.33,1.72] [1.11,1.24] 2.61 x 1075 2.33 x 1078 47.72 54.54
Figure 12(c) IV-(b) — 2 6.1 [1.39,1.29] [1.18,1.24] [1.37,1.31] [1.18,1.24] 3.26 x 1074 7.19 x 1077 43.64 171.99
Figure 12(d) IV-(c) — 2 6.1 [1.69,0.89] [1.22,1.24] [1.83,0.54] [1.22,1.24] 7.09 x 1072 9.31 x 1077 42.24 249.01

"Stands for second order statistic of the eigenvalues.
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Algorithm 4.1. Blind ToF imaging algorithm.

Input: Noisy ToF measurements g;.

1: Kernel initialization: Compute chO} via (4.19).
2: for loop = 1 tomax. iterations do

3: for j=1 t0 jmax do

4: Construct the matrices in (4.14);
5: Update pLj],qu] by solving (4.17);
6: if (4.20) holds then

T Terminate all loops;

8: end if

9: end for

10:  Calculate {7[k],T'v[k]}ker, using (4.12);
11:  Update ¢, using (4.18);
12:  if (4.20) holds then

13: Terminate all loops;
14:  end if
15: end for

Output: The SRF parameters {7[k],'v[k]}rer, and the kernel ¢, .

Multi-path Imaging Light-in-Flight Imaging
Section 5.1 Section 5.2

Diffuse Imaging Super-resolution (K=2) Higher order Imaging (K>2)
Section 5.1.1 Section 5.1.2 Section 5.1.3
Lock-in Sensors [27] TSCPC [40]

Figure 7. Roadmap for hardware-based ToF imaging experiments. We demonstrate the performance of the
proposed blind ToF imaging approach across various experimental setups and data modalities.

5. Experiments. Our experiments aim to validate the effectiveness of the blind ToF imag-
ing approach, demonstrating that it performs comparably to methods with prior kernel cali-
bration, which we use as a baseline for ground truth. Through a series of 10 experiments, we
achieve robust 3D scene reconstruction across various experimental setups and ToF datasets
without any kernel calibration. Figure 7 illustrates the different ToF imaging scenarios in-
cluded in our experiments. We assess performance using the following quantitative metrics.
MSE &(Ty,T'y) and E(7r,7r) are used to evaluate the 3D scene reconstruction accuracy.
Peak signal-to-noise ratio (PSNR) is utilized to assess the accuracy of kernel estimation, i.e.,
PSNR(¢p,, p,) = 1010g10(8|(|$:7%r)). We tabulate the experimental parameters and performance
evaluation in Table
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5.1. Multipath imaging. Commercial ToF systems determine distance by amplitude mod-
ulation of a continuous wave. Although ToF sensors typically provide a single depth value per
pixel, the actual scene might contain multiple depths, such as a semitransparent surface in
front of a wall. This situation is known as a mixed pixel scenario [13, 35], where multiple light
paths converge at the same pixel, resulting in a measured range that is a nonlinear mixture
of the incoming paths.

To address the issue of multipath interference, one effective strategy involves emitting a
custom code and capturing a series of demodulated values through successive electronic delays.
Subsequently, a sparse deconvolution [13, 35] is applied to isolate a sequence of Diracs in the
time profile, each corresponding to different light path depths and multipath combinations.
We consider the results from this method as the ground truth for validating our blind recovery
approach on these ToF datasets.

5.1.1. Diffuse imaging. We use the setup from [13, 35]. The scene consists of a placard
reading “TIME OF FLIGHT” which is hidden by a diffusive semitranslucent sheet. Raw
data comprising a 120 x 120 x 2976 image tensor is acquired. Here, N = 2976 refers to the
equidistant /uniform ToF measurements captured with sampling time 7' = 70 ps. The ToF
measurements have been acquired with a custom ToF camera equipped with a PMD 19k-S3
sensor utilizing the architecture previously used in [5, 13, 35]. Both the illumination and the
ToF pixels are modulated using the same binary M-sequences. This leads to a relatively narrow
cross-correlation function in the time domain. The illumination control signal can be shifted
with regard to the pixel control signal, thus shifting the resulting cross-correlation function.
To contextualize our results, we first show the blind recovery of a single-pixel ToF data
(r=1[6060]") in Figure 8. The estimated kernel and reconstructed pixel measurements reach
accuracy with PSNR(g,, @,) =43.24 dB, (T, T) =2.31x 1075, and &(7y,7¢) = 1.87 x 1074,
Then, we reconstruct the 3D scene from estimated time profiles by running the blind recovery

%x10° (a) Kernel Estimation
A
2+ Al Ground Truth Kernel
El [\ — — Estimated Kernel
S 15¢ |
° \
2T I
s |
£ 05
£ i
| J o . ~
ittt eitemccnt I e —— o] N,
0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
%103 (b) Spike Estimation
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5 2r¢ —A SR with Known Kernel
8 — @ Blind SR (Proposed)
o 15F
kel
E
£
Eosp T
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L I L L Il I i L
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Figure 8. Blind recovery of single pizel ToF measurements (r=1[6060]", K =2). (a) Kernel reconstruction.
(b) 3D SRF estimation. The experimental setup is shown in Figure 2.
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algorithm for each pixel measurements. This leads to indistinguishable results compared to
the ground truth shown in Figure 1.

5.1.2. Super-resolution. In the context of multipath imaging, a natural and challenging
scenario is to resolve closely located objects from time profiles. In order to validate the SRes
capability of the proposed approach, we perform experiments on two different setups using
lock-in sensors and TCSPC-TOF systems.

Lock-in sensors. The 3D scene comprises a mannequin head placed between a diffusive
semitranslucent surface and a wall in the backdrop, as shown in Figure 2. By shifting the
translucent surface, the interobject separation between the diffusive surface and the man-
nequin head is gradually reduced from 160, 130, 100 to 70 cm, respectively, with 30 cm
reduction in each experiment. This equivalently leads to equidistant spike shifts as shown in
Figure 9 (dashed lines). For this dataset, raw data comprising a 120 x 120 x 3968 x 4 image

x103 EEXd  https://youtu.be/wMlWIV7B660 (a)
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—4& SR with Known Kernel

=}

S6

§ 4+ —-- Blind SR (Proposed)
£2

Eo

! )

1 1.5
(b)

———ToF Samples
—& SR with Known Kernel
—--# Blind SR (Proposed)

I |

1 15
x103 EIIEEd  https://youtu.be/F-g6X85DW04 (0)

——ToF Samples
1 T —4a SR with Known Kernel

—--# Blind SR (Proposed)

i ‘ ‘
0 0.5 1 1.5

x10° https://youtu.be/f0_4ivWC2Hg ()
r i

o
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F { —--# Blind SR (Proposed)

Amplitude (a.u.)
N A O
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! L )

0.5 1 1.5
Time (x10-7 sec)

o

Figure 9. Lock-in sensor based super-resolved ToF imaging. We benchmark the performance of the proposed
method with kernel calibration. The scene consists of a mannequin head placed between a diffusive semitranslu-
cent surface and a wall in the backdrop. By mowving the diffusive surface, the interobject separation is uniformly
reducing from (a) 160, (b) 130, (c) 100, to (d) 70 ¢m, respectively. The dashed lines represent the ground truth
spikes. Our method super-resolves the interobject separation for (a) 161, (b) 134, (c) 98, and (d) 72 c¢m, which
accurately matches the experimental setup in Figure 2.
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tensor is acquired from a lock-in ToF sensor, for which N = 3968 refers to the number of ToF
measurements recorded with sampling time T'= 96.15 ps.

The blind SRF recoveries of a single-pixel ToF measurement (r = [6060]' , K = 2) are
presented in Figure 9. The translucent surface (front) is moving closer to the mannequin head
(back), leading to the challenges of separating two objects. This can be intuitively observed
from Figure 9(c) and (d), where one spike is invisible as the interobject distance is smaller
than the kernel width. We validate the reconstructed 3D scene information by comparing
the estimated interobject separation to the actual scene setups. The interobject separation is
computed by Ad,, = |AT, — ATg|e/2, where ¢ =3 x 108m/s is the speed of light. Here, the
Adyy, efers to the results using the calibrated kernel. We outline the estimated results as
follows: (1) 160 cm in Figure 9(a): Ado; = 161 and Adp; = 159 cm; (2) 130 cm in Figure 9(b):
Adpy = 134 and Adp; = 131 cm; (3) 100 cm in Figure 9(c): Adpr =98 and Adp; = 100 cm; and
(4) 70 cm in Figure 9(d): Ado; = 72 and Adp; = 69 cm. This gives rise to the estimated target
shift step with 27,36,26 cm (blind recovery) and 28,31,31 cm (known kernel). Compared to
30 cm shift difference from the actual scene setup, this demonstrates the SRes capability
of the proposed blind recovery method. The 3D visualization of the object depth imaging
is presented in Figure 10. We further reconstruct the 3D scene from the estimated time
profiles by running the algorithm for all pixel measurements, as shown in Figure 11. Despite
the challenging experimental setup, the proposed method super-resolves two objects up to a
separation uncertainty of 5 cm, which is equivalent to resolving a separation of 0.33 ns in the
time domain. This effectively demonstrates the SRes capability of the proposed method.

TCSPC. The experimental setup is borrowed from [14, 33] and comprises two retroreflect-
ing corner cubes. In this setup, with one cube fixed, the interspacing with the second cube is

—| 3D View with Known Kernel l— —| Blind 3D Reconstruction with Unknown Kernel l—

Experiment 1 Experiment 2 Experiment 3 Experiment 1 Experiment 2 Experiment 3

N
R

2
%
s
S
A
Sy
§
IS
>

Figure 10. Benchmarking blind ToF imaging with kernel calibration. The distance between the translucent
surface and the mannequin head is reducing from 160, 100, to 70 c¢m, respectively, as shown in Figure 2. This
requires algorithmic SRes capability. (a) 3D visualization of depth imaging with kernel calibration. (b) 3D
visualization of blind depth imaging using the proposed blind recovery method.
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Figure 11. Super-resolving object through a diffusive semitranslucent sheet. (a) and (b) are amplitude and
depth imaging using known kernel; (c) and (d) are corresponding results utilizing our blind recovery method.
The experimental setup is shown in Figure 2. Despite the challenges of small interobject separation, our method
still achieves accurate scene reconstructions in all scenarios.

reduced to create a scenario that requires algorithmic SRes [14]. For a corner cube, all beams,
independent of incident angle, are reflected back in the original direction so the behavior is
that of a perfect reflecting surface. In these experiments, the sampling step of the receiver was

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/20/25 to 146.179.86.172 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

BLIND TIME-OF-FLIGHT IMAGING 1461

. %103

320r A Ground Truth Kernel

© / \ — — Estimated Kernel

S0t [\

= | \\

E 0 v N~
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

. %103

E 30 I ToF Samples

® —A SR with Known Kernel

g207 — @ Blind SR (Proposed)

S 10t

£

< 0 | | L I L . . | |
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

_ x108

230 ToF Samples

° 20 - —A SR with Known Kernel

E — @ Blind SR (Proposed)

310+

£

<C 0 I I L L ! ]
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

. x10®

3 40 ToF Samples

2 —A SR with Known Kernel

220+ — @ Blind SR (Proposed)

a

£

<C 0 L L L L L |
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Time(x 10 8sec)

Figure 12. LiDAR based super-resolved ToF imaging. The scene consists of two retro-reflecting cubes at
a distance of 330 m from the TCSPC system. We show the blind recovery of the kernel and object depths at
different interreflector separations. Our blind recovery method resolves two reflectors up to a resolution of 13.47
ps (equivalently 0.20 c¢m), showcasing the SRes capability of our method.

T =6.1 ps, and the collection time for each histogram was 30 seconds. We plot the estimated
time-localized kernel and the raw measurements from three different interreflector separations
in Figure 12(a)—(d), respectively. Similar to the scenarios in Figure 9, the task becomes more
challenging as interreflector separation gets smaller. As shown in Figure 12, the reconstructed
results are almost indistinguishable between the ground truth (obtained using [14]) and its
recovery (see Table 1), which also matches the experimental setup and reported results [14]. It
is noteworthy that the results in Figure 12 demonstrate the SRes of our method that resolves
a separation of 13.47 ps in the time domain (equivalently 0.20 cm).

5.1.3. High-order imaging. This experiment is dedicated to pushing the limit of our
method in the scenarios of high-order multipath imaging (K = 3). We use a calibrated scene
with two translucent surfaces with a wall in the backdrop. The interobject separation is 1.8
and 2 meters, respectively, with a sampling step of T'= 70 ps.

The blind recovery of two pixel measurements with coordinates r = [50 7O]T and r =
[45 60] " is plotted in Figure 13. It is worth noting that, compared to the data in Figures 8
and 9, the raw ToF measurements in Figure 13 are contaminated by higher levels of noise,
creating algorithmic challenges for scene reconstruction. From the experimental results in
Table 1, the estimated interobject separation from blind recovery is given by
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Figure 13. Benchmarking blind ToF imaging for high-order reflections (K =3). Two translucent surfaces
are placed in front of a wall with separation of 1.8 and 2 meters, respectively. The kernel and SRF recovery of
two pizel measurements are plotted, showcasing the SRes capability of our method.

1. pixel at r=[4560]", Adgs = 1.81, Adj2 = 1.95 meters;

2. pixel at r=[5070]", Adg; = 1.82, Adys = 2.01 meters.
This accurately matches the experimental setup (i.e., 1.8 and 2 meters) and the reported re-
sults in [8] that used the known kernel, corroborating the effectiveness of the proposed method.

5.2. Light-in-flight imaging. In this experiment, the scene consists of a mannequin head
located between a diffusive semitranslucent surface and a wall in the backdrop. The inter-
object distance between the mannequin head and the wall is 160 cm, as demonstrated in
Figures 2 and 10. For this dataset, raw data comprising a 120 x 120 x 3968 image tensor
is acquired from a lock-in ToF sensor with sampling time 7" = 96.15 ps. Using our custom
ToF camera and blind recovery approach, we are able to visualize light sweep over the scene
with multipath effects, as shown in Figure 14. In the early time-slices, the light first hits the
diffusive sheet in Figure 14(k) (8.59 ns). The light then sweeps over the mannequin head on
the scene from (o) (11.72 ns) to (t) (15.63 ns), and eventually hits the back wall in (y) (19.53
ns). The time slices correspond to the true geometry of the scene. The light sweep movies for
inter-object separation of 160, 100 to 70 cm, respectively, can be visualized via the YouTube
links provided in Table 2.

6. Conclusion. This paper tackles a fundamental algorithmic challenge in optical time-
of-flight (ToF) imaging. ToF imaging systems, which are active devices, illuminate scenes
with light pulses or kernels and reconstruct them by capturing echoes of back-scattered light.
This process enables the understanding of the 3D environment but introduces the challenge
of sparse super-resolution (SRes), as the echoes exist at a finer time resolution than what
conventional digital devices can measure. Additionally, the quality of SRes depends on the
knowledge of the probing light pulses.
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Figure 14. LIF imaging: The scene consists of a mannequin head placed between a diffusive semitranslucent
surface and a wall in the backdrop with a separation of 160 cm, as shown in Figure 2. Our method enables the
visualization of the light sweep process without any kernel calibration. Light first impinges the diffusive surface
in (k), then sweeps over the mannequin head from (o) to (t), and finally reaches the back wall as shown in (y).
We refer to Table 2 for visualization of light sweep movies corresponding to interobject separation of 160, 100
to 70 c¢m, respectively. These movies provide a visual interpretation of pulse propagation through the scene set
up i Figure 2.

Table 2
YouTube web links for light sweep movies.

Interobject separation Web link (YouTube)

160 cm https://youtu.be/wMIW Jv7B660
100 cm https://youtu.be/F-g6X85DWO4
70 cm https://youtu.be/fO_4ivWC2Hg

Departing from previous methods, this paper presents an algorithmic strategy that achieves
sparse SRes without needing information about the emitted light pulses. Our algorithm ef-
fectively recovers sparse echoes modeled as continuous-time Dirac impulses, providing a more
accurate representation of physical reality. Consequently, our approach eliminates the need
for pulse calibration, offering a highly adaptable framework for blind ToF imaging that ex-
tends the limits of time resolution in 3D scene reconstruction. The validation of our approach
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through extensive hardware experiments, encompassing a variety of scenarios and ToF modal-
ities, demonstrates the empirical robustness and practical benefits of our method. Looking

ahead,

our algorithmic framework opens several avenues for future research, particularly in

expanding this blind approach to additional contexts.

1.

Algorithmic frameworks. Currently, we do not exploit the fact that all pixels utilize
the same pulse. This scenario has been explored under the theme of multichannel
sparse blind deconvolution [36, 58] and applying similar priors to our case is highly
pertinent. Moreover, considering the blind recovery scenario where each spike is filtered
through a distorted version of the original pulse [6] can pave the way for new application
areas.

. New sensing pipelines. Exploring nonlinear sensing modalities leads to the emer-

gence of new classes of inverse problems and provides clear practical advantages over
traditional pointwise sampling. In this context, we have identified two potential areas
for development: (i) one-bit sensing [8], which offers a low-complexity implementation,
and (ii) the unlimited sensing framework [4, 11, 12], which simultaneously provides
high dynamic range and high digital resolution.

. Application areas. Our methodology is applicable to a range of challenges including

fluorescence lifetime imaging [5], looking-around-the-corners [55], and imaging through
scattering [61], all of which are significant for practical implementations. Moreover,
beyond the realm of optical ToF methods, our approach has potential advantages for
related ToF systems such as seismic imaging [36] and radar technologies [22].
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