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Abstract—Spectral Estimation (SpecEst) is a core area of signal
processing with a history spanning two centuries and applications
across various fields. With the advent of digital acquisition,
SpecEst algorithms have been widely applied to tasks like
frequency super-resolution. However, conventional digital acquisi-
tion imposes a trade-off: for a fixed bit budget, one can optimize
either signal dynamic range or digital resolution (noise floor),
but not both simultaneously. The Unlimited Sensing Framework
(USF) overcomes this limitation using modulo non-linearity in
analog hardware, enabling a novel approach to SpecEst (USF-
SpecEst). However, USF-SpecEst requires new theoretical and
algorithmic developments to handle folded samples effectively.
In this paper, we derive the Cramér-Rao Bounds (CRBs) for
SpecEst with noisy modulo-folded samples and reveal a surprising
result: the CRBs for USF-SpecEst are scaled versions of the
Gaussian CRBs for conventional samples. Numerical experiments
validate these bounds, providing a benchmark for USF-SpecEst
and facilitating its practical deployment.

Index Terms—Cramér-Rao Bounds, modulo non-linearity,
Prony’s method, spectral estimation, Unlimited Sensing.

I. Introduction
Spectral Estimation or SpecEst, also referred to as frequency

estimation, is a classical and fundamental topic in the signal
processing (SP) community, with numerous applications in
radar, communications, acoustics, optics, and more. Since the
pioneering work of Prony [1], SpecEst has been extensively
studied over the past decades [2]–[6].

Despite significant theoretical advances [7]–[9] and al-
gorithmic developments [3]–[5], practical applications of
SpecEst remain constrained by limitations in digital acqui-
sition. Analog-to-digital converters (ADCs) quantize sum-of-
sinusoids (SoS) signals under a finite bit budget, posing a
trade-off between signal dynamic range and digital resolution.
This poses fundamental limitations for two core capabilities
in SpecEst: resolving closely-spaced frequencies and distin-
guishing between weak and strong targets.

The USF has recently emerged as a paradigm shift breaking
the trade-off in conventional digitization; the USF enables
simultaneous high dynamic range (HDR) and high digital
resolution sensing [10]–[14]. The USF leverages modulo non-
linearity in the analog domain, producing computationally

This work is supported by the European Research Council’s Starting Grant
for “CoSI-Fold” (101166158) and UK Research and Innovation council’s FLF
Program “Sensing Beyond Barriers via Non-Linearities” (MRC Fellowship
award no. MR/Y003926/1). Further details on Unlimited Sensing and mate-
rials on reproducible research are available via https://bit.ly/USF-Link.

encoded, folded samples. The resulting digital representation
is of low dynamic range and is achieved through the mapping,

Mλ : g 7→ 2λ

Åïï
g + λ

2λ

òò
− 1

2

ã
, [[g]]

def
= g − ⌊g⌋ (1)

where ⌊g⌋ = sup {k ∈ Z| k ⩽ g} and λ > 0 is the folding
threshold. Hardware realization [12] of the USF has shown
that it overcomes fundamental bottlenecks in conventional dig-
itization, delivering performance breakthroughs in the context
of: • Signal Dynamic Range. USF eliminates clipping or
saturation which is widely reported problem while offering up
to 60-fold dynamic range extension [15] in practical setups. •
Digital Resolution. Modulo folding in USF offers high digital
resolution, up to 10 dB improvement in quantization noise in
applications such as radar [16] and tomography [17].
Contributions. The USF-based spectral estimation was first
studied in [18]. Akin to Prony’s method, we have recently
shown that 6K + 4 modulo samples suffice to recover K
sinusoids [14]. Here, Our goal is to investigate the performance
bounds for single channel. While CRBs for SpecEst has been
widely covered in literature [7], the context of USF-SpecEst is
relatively new and unexplored, however, highly relevant given
the advantages of the USF. This paper investigates the theo-
retical limits of USF-SpecEst from noisy, non-linearly folded
samples. Concretely, we derive Cramér-Rao Bounds (CRBs)
for USF-SpecEst. Our starting point is the justification of the
noise model based on on-going hardware experiments [14]
with modulo ADCs or Mλ–ADC. There on, we derive the CRBs
for both single and multiple sinusoidal estimation which is
validated via numerical experiments. Somewhat surprisingly,
our work shows that despite the presence of modulo non-
linearity in the acquisition, the CRBs for USF-SpecEst match
the Gaussian CRBs for SpecEst.
Our work fundamentally differs from the recent work in [19]

in two ways: (i) we provide CRBs for USF-SpecEst problem,
and, (ii) our noise model in (2), different from [19], stems
from hardware experiments and validation based on ongoing
work on USF-SpecEst [14], [20].

II. Problem Formulation
Let g (t) ∈ L∞ represent a sum-of-sinusoids (SoS),

g (t) =
∑K

k=1 ak sin (ωkt+ φk) ≡ SoSK (θ) where θ =
{ak, ωk, φk}k∈IK denotes the unknown amplitudes, phases and



frequencies, respectively. The action of folding non-linearity
in (1) maps g into a folded, continuous-time signal, y (t) =
Mλ(g (t)). Thereon, y (t) is pointwise sampled, leading to
folded samples y [n] = Mλ(g (t))|t=nT , n ∈ IN where T is
sampling step and N is number of samples (IN = {1, . . . N}).
Since an ADC performs analog-domain folding, the noise
contribution arising during sampling is attributed to (i) thermal
noise following a Gaussian distribution [21] and (ii) quanti-
zation noise following a uniform distribution. As a result, in
real-world scenarios, the noisy measurements are modeled as,

yw [n] = y [n] + w [n] , n ∈ IN (2)

where w [n] ∼ N (0, σ2) denotes the noise. We refer the reader
to Fig. 6 in [14] for details on the hardware experiments that
justify the noise assumption. Given yw [n]n∈IN , our goal is to
derive statistical performance bounds, specifically the CRBs, to
benchmark the performance of USF-based spectral estimation.

III. Cramér-Rao Bounds

CRB for Single Sinusoid with Oversampling. We begin our
analysis with the simple case of a single sinusoid and examine
how the sampling interval T influences the theoretical limits of
spectral estimation from noisy folded samples. Furthermore,
we establish the connection to the conventional CRBs [7], [9],
[22]. Our starting point is the modular decomposition property,

g = Mλ(g) + εg, εg (t) =
∑M

m=1
cmu (t− τm) (6)

where εg is the residue characterized by cm ∈ 2λZ and
u (·) and {τm}m∈IM denote the unit step function and folding
instants, respectively. Next, we demonstrate that oversampling
inherently leads to bounded amplitudes cm of the residue.

Lemma 1. Let g(t) = SoSK (θ), ∆L = ∆L−1 ◦∆ denote the
L-order finite-difference operator (L ∈ Z+) and κ > 0 be an
arbitrary constant. Then,

T ⩽
2

Ω
sin−1

Ç
1

2
L

 
κ

∥a∥ℓ1

å
=⇒

∥∥∆ε∆(L−1)g

∥∥
∞ ⩽ 2λ

⌈
κ
2λ

⌉
(7)

where a = [a1, . . . , aK ]⊤, εs
(6)
= s− Mλ(s) and Ω

def
= ∥ω∥∞.

Proof. By definition, the residue of ∆Lg is given by ε∆Lg =(
∆Lg − Mλ(∆

Lg)
)
. From modular arithmetic [11], it follows

that
∥∥∆ε∆(L−1)g

∥∥
∞ ⩽ 2λ

⌈∥∥∆Lg
∥∥
∞/(2λ)

⌉
. To establish the

result, we first derive a bound on ∆Lg. Consider the first-order
difference (∆g) [n] = g[n+1]−g [n]. Using Young’s inequality
for convolution, we have ∥∆g∥∞ ⩽ 2 sin (ΩT/2) ∥a∥ℓ1 . For
an arbitrary κ > 0, ∥∆g∥∞ is upper-bounded by choosing
T ⩽ 2sin−1

(
1
2

κ
∥a∥ℓ1

)
/Ω. By induction, for ∆L, we obtain∥∥∆Lg

∥∥
∞ ⩽ 2LsinL (ΩT/2) ∥a∥ℓ1 . (8)

Thus,
∥∥∆Lg

∥∥
∞ can be bounded arbitrarily by choosing,

T ⩽ T Ω
λ (κ) =

(
2
Ω

)
sin−1

(
1
2

L

»
κ

∥a∥ℓ1

)
=⇒

∥∥∆Lg
∥∥
∞ ⩽ κ.

Substituting this bound into the inequality
∥∥∆ε∆(L−1)g

∥∥
∞ ⩽

2λ
⌈∥∥∆Lg

∥∥
∞/(2λ)

⌉
leads to the desired result.

Lemma 1 states that sampling at three times the Nyquist
rate, i.e. T ⩽ π

3Ω , guarantees an exponential rate of dynamic
range shrinkage. This constant-factor oversampling mitigates
the resolution loss of the discrete frequencies {ωkT}Kk=1

caused by oversampling. Moreover, choosing κ ⩽ λ, L = 1
results in M < N since 1) the discrete frequencies are upper
bounded by π

3 and 2) ∥∆g∥∞ ⩽ λ from (8). In this paper, we
focus on the case L = 1. This choice is motivated by the fact
that, in noisy scenarios, applying ∆L with L > 1 amplifies
noise, thereby degrading the accuracy of spectral estimation.
The oversampling setup enables an asymptotic analysis of the
CRBs in single sinusoid scenario, yielding explicit expressions
for the CRBs as formalized below.

Theorem 1. Let g(t) = a1 sin (ω1t+ φ1) and the noisy folded
samples be yw[n] = Mλ(g(nT )) + w[n], n ∈ IN with λ =
|a1|− ϵ, ϵ > 0, T ⩽ (2/ |ω1|) sin−1 (λ/ (2 |a1|)) , {ω1T, φ1} ∈
Q2, and w[n] ∼ N (0, σ2). Then,

lim
N→∞

CRBλ (a1)CRBλ (ω1T )
CRBλ (φ1)

 =
2γ

NPSNR

 a21Ä√
12/N

ä2
(2)

2

 (9)

where γ = (1− cos (ω1T ))
−1

, PSNR = a21/σ
2.

Furthermore, limN→∞ CRBλ (θ) = γ limN→∞ CRBw (θ) where
CRBw (·) denotes the conventional CRBs [7].

Proof. To prove (9), we begin by modeling the residue as
random impulsive noise governed by a Bernoulli distribution.
The resulting hybrid Gaussian-Bernoulli noise is approximated
by a single Gaussian distribution, and we show that the
approximation error is bounded and vanishes as N → ∞.
Based on this noise characterization, we derive the CRBs and
establish its correspondence with the conventional CRBs.
1 Statistical Modelling of Residue. From the modulo de-
composition property in (6), we obtain that y[n] = g[n] −
εg[n], n ∈ IN . Denote by y = y[n+ 1]− y[n], then

y[n] = g[n]− εg[n], εg[n] =
∑M

m=1
cmδ [n− nm] (10)

where nm = τm
T ∈ IN and δ [·] is the discrete delta function.

In view of Lemma 1, T ⩽ (2/ |ω1|) sin−1 (λ/ (2 |a1|)) =⇒
cm ∈ {−2λ, 2λ}. Unlike the deterministic strategies used in
residue recovery [12] and followed-up approaches, [23]–[25],
this paper models the residue εg [n] , n ∈ IN−1 as random
impulsive noise following Bernoulli distribution,

Pr (εg[n] = z) = pδ[z−2λ]+qδ[z+2λ]+1−(p+q)δ[z] (11)

and p+ q = M
N . We assume the equal probability of positive

and negative folds, resulting in p = q = M/(2N).
2 Noise PDF Approximation. Given this stochastic char-
acterization, the noisy folded measurements yw read as



[R]1,1 = γ−1N + o(N),
∣∣∣[R]1,2

∣∣∣ ⩽ (2+|cot(ω1T )|)a1TN+o(N)
2 , [R]1,3 = o(N), [R]2,2 =

γ−1a2
1T

2N3

3

[R]2,3 =
γ−1a2

1TN2+o(N2)
2 , [R]3,3 = γ−1a21N + o(N) where γ

def
= (1− cos (ω1T ))

−1 (3)

yw [n] = g [n] + v [n], where v [n] = εg [n] + x [n]. x [n] =
w [n+ 1] − w [n] satisfies that x [n] ∼ N (0, 2σ2) since
{w [n]}n∈IN ∼ IID N (0, σ2) (IID refers to independent and
identically distribution).

We then analyze the PDF of v [n] , n ∈ IN−1. Denote by
FV (v) and pV (v) the cumulative distribution function (CDF)
and probability density function (PDF) of the random variable
V , respectively. Then, by definition, we have

FV (v) = Pr (V ⩽ v) = E [Pr (εg ⩽ v − x)] =
(
px ∗ Fεg

)
(v)

where ∗ denotes convolution and Fεg (εg) is given by

Fεg (εg)
(11)
= qu (εg + 2λ) + (1− p− q)u (εg) + pu (εg − 2λ) .

As a result, the CDF of v can be computed as

FV (v) = qFX (v + 2λ) + (1− p− q)FX (v) + pFX (v − 2λ)

and hence, its PDF is given by pV (v) = dFV (v)
dv =

qpX (v + 2λ) + (1 − p − q)pX (v) + ppX (v − 2λ) which is
a mixture of Gaussians. Here, we approximate pV (v) using
pX (v), with the approximation error upper bounded by

E2(pv, pX)
def
=

∫
R
|pV (v)− pX (v)|2 dv

= p2

2
√
2πσ

Å
6 + 2e

−4λ2

2σ2 − 8e
−λ2

2σ2

ã
. (12)

Note that E2(pv, pX) is inversely proportional to σ and p2.
This indicates that the approximation is accurate in scenarios
with heavy noise or sparse foldings.
3 Asymptotic Analysis of Hybrid Noise. Given the hy-
potheses {ω1T, φ1} ∈ Q2, we can obtain that ∀{n, l} ∈ Z2,
the equation ω1Tn+φ1 = π/2+ lπ at most has one solution.
This implies, given N ∈ Z+, n ∈ IN , ∃ϵ > 0, λ = |a1| − ϵ,
such that the inequality |g (nT )| > λ at most has one solution.
Combining these conditions, it follows that N → ∞ =⇒

M/N → 0. From (11), we have p = q = M/(2N), leading to
the conclusion that N → ∞ =⇒ E2(pv, pX) → 0. This result
indicates that the noise effect (v) on spectral estimation from
yw asymptotically reduces to that of x alone, as if modulo
folding does not influence the asymptotic behavior of the
performance bounds. Therefore, in the following analysis, we
approximate the PDF of v as pV (v) = pX (v).
4 CRBs Derivations. For an unbiased estimator θ̂ of θ

E
î
(θ̂ − θ)(θ̂ − θ)⊤

ó
≽ (I (θ))

−1 (13)

where I (θ) is the Fisher Information Matrix (FIM)

I (θ)
def
= E

î
∂θ logL (yw; θ)

(
∂θ logL (yw; θ)

)⊤ó (14)

and L (yw; θ) is the likelihood function of noisy samples (yw).
Due to the IID assumption, logL (yw; θ) simplifies to,

logL (yw; θ) = −(N − 1) log(2
√
πσ)− 1

4σ2

∑N−1

n=1
v2[n].

To compute I (θ), we need to evaluate ∂θ logL (yw; θ),

∂θ logL (yw; θ) =
−1
2σ2 ∂θ(yw − g)⊤v = 1

2σ2 (∂θg)
⊤v

where yw,g and v denotes the vector form of yw[n], g[n] and
v[n], respectively. Hence, I (θ) in (14) simplifies to,

I (θ) = 1
4σ4E

[
(∂θg)

⊤vv⊤∂θg
]
= 1

2σ2

(
∂θg

)⊤
∂θg.

Given g [n] = g (nT + T )− g (nT ), we obtain

∂a1
g[n] = [z1]n = Im(eȷ(ω1T (n+1)+φ1) − eȷ(ω1Tn+φ1))

∂ω1
g[n] = [z2]n = a1Re(e

ȷ(ω1T (n+1)+φ1)(nT + T ))

− a1Re(e
ȷ(ω1Tn+φ1)nT )

∂τ1g[n] = [z3]n = a1Re(e
ȷ(ω1T (n+1)+φ1) − eȷ(ω1Tn+φ1)).

The Jacobian matrix ∂θg can be written in matrix form as

∂Θg = Z and Z =
[
z1 z2 z3

]
∈ RN×3.

Hence, I (θ) = 1
2σ2Z

⊤Z = 1
2σ2R where [R]i,j = z⊤i zj . Next,

we will characterize [R]i,j to elucidate the asymptotic bounds
in explicit form. This requires the following computations for
summations of trigonometric polynomials. More specifically,
with

∑N
n=1 e

ȷ(nω+φ) = f(ω), we show thatñ∑N
n=1 n

L cos(nω + φ)∑N
n=1 n

L sin(nω + φ)

ô
=

ï
Re

(
(−ȷ)L∂L

ω f (ω)
)

Im
(
(−ȷ)L∂L

ω f (ω)
)ò (15)

where f(ω)
def
=

eȷ(ω+φ)(1−eȷNω)
1−eȷω , L ∈ N, {ω, φ} ∈ R2.

We prove (15) by induction: for L = 0, it boils down
to geometric summation. For L > 1, taking the L-th order
derivative of f(ω) leads to,

∑N
n=1(ȷn)

Leȷ(nω+φ) = ∂L
ω f (ω).

From the Euler’s formula, we obtain the desired result in
(15) by separating the real and imaginary part of ∂L

ω f (ω).
Hence, substituting (15) into [R]i,j leads to the closed-form
formula for [R]i,j in (3), organized in terms of the order of N .
o(·) in (3) is the notion of order at infinity defined as, bn =
o(an) ⇐⇒ limn→∞ |an/bn| = ∞. With the result in (3), the
CRBs are computed by evaluating (I (θ))−1 = 2σ2R−1,CRBλ (a1)CRBλ (ω1)

CRBλ (τ1)

(3)
= 2σ2

det(R)

γ−2a41T
2N4/12 + o(N4)

γ−2a21N
2 + o(N2)

γ−2a21T
2N4/3 + o(N3)

. (16)

From (3), we obtain det(R) = γ−3a41T
2N5/12 + o(N5). By

substituting det(R) into (16), we get the result in (9).



Algorithm saturates as  
impulsive noise dominates

Fig. 1: CRB tests for single sinusoid (averaged over 10000 random realiza-
tions). We consider K = 1 sinusoid with parameters: ω1T = 1.05, a1 = 1,
ϵ = 9.83 × 10−6, and N = 100 samples, resulting in M = 6 spikes. (a)
Scatterplot of the retrieved frequencies. (b) Performance evaluation compared
to the CRBs in Theorem 1.

Remarks. The key insights from Theorem 1 are as twofold:
(i) The CRBs for sinusoidal parameter estimation from yw
asymptotically converges to the conventional CRBs [7], scaled
by a factor γ. (ii) The result holds whenever M = o(N). In
this context, the sampling condition {ω1T, φ1} ∈ Q2 is just
one possible scenario and is not a necessary condition.
CRB for Multiple Sinusoids with Oversampling. The analy-
sis above reveals that the hybrid noise v asymptotically reduces
to x alone when M = o(N). This result is independent of g,
making it applicable to general multiple sinusoids scenarios.
Consequently, the CRBs for multiple sinusoids from noisy
folded samples yw converges to the conventional CRBs [2],
[7], [26], scaled by a factor γk = (1− cos (ωkT ))

−1 for each
frequency ωk. Notably, higher frequency moduli (|ωk|) are
expected to yield better estimation in the context of USF.
Moreover, the convergence of v to x suggests the feasibility

of direct spectral estimation from yw in the modulo domain.
This implies that existing high-resolution spectral estimation
techniques can be adapted for this setting [2], [3], [6], [27],
[28]. Using a spectral estimation method, we empirically val-
idate the result in Theorem 1 through numerical experiments.

IV. Experiments
Here we validate the CRBs derived in Theorem 1. Using

the matrix pencil method [3], we examine the gap between the
theoretical limits (Theorem 1) and practical performance (al-
gorithmic results) across various experimental settings. These
include different noise levels, single and multiple sinusoids,
and varying folding counts. Through numerical experiments,
we demonstrate the validity of the derived CRBs and the
corresponding analysis presented in Section III.
CRB Tests for Single Sinusoid Case. In the first experiment,
we consider a single sinusoid with ω1T = 1.05 and amplitude
a1 = 1. The threshold is set as λ = |a1| − ϵ, with ϵ = 9.83×
10−6, resulting in M = 6 spikes from N = 100 samples.
The spectral estimation results obtained using the matrix

pencil method [3] are presented in Fig. 1. As shown in Fig. 1
(b), the algorithm’s performance can be classified into three
regions based on the PSNR value:

Algorithm saturates as  
impulsive noise dominates

Fig. 2: CRB tests for multiple sinusoids (averaged over 10000 random
realizations). We consider K = 2 sinusoids with the following parameters:
{ω1T, ω2T} = {0.63, 1.00}, {a1, a2} = {1, 1}, ϵ = 2.51 × 10−4, and
N = 100 samples, resulting in M = 2 spikes. (a) Scatterplot of the retrieved
frequencies. (b) Performance evaluation.

1 [0, 6] dB: In this region, the algorithm exhibits larger
estimation variances due to significant noise.
2 [6, 16] dB: Beyond 6 dB, the algorithm’s performance
stabilizes and closely approaches the derived CRBs.
3 [16, 30] dB: In this low noise regime, E2(pv, pX) becomes
significant, meaning the impulsive noise εg dominates the
noise effect (v). Since εg is independent of PSNR, the al-
gorithm’s performance saturates and begins to deviate asymp-
totically from the derived CRBs.
CRB Tests for Multiple Sinusoid Case. We further evaluate
the derived CRBs in the scenario of multiple sinusoids. In
this experiment, the input consists of K = 2 sinusoids
with {ω1T, ω2T} = {0.63, 1.00} and amplitudes {a1, a2} =
{1, 1}. The threshold is set as ϵ = 2.51 × 10−4, resulting in
M = 2 spikes from N = 100 samples.
As observed in the single sinusoid case, the algorithm’s

performance curve approaches the CRBs for PSNR ∈ [11, 17]
dB. Beyond this PSNR range, the algorithm saturates and
reaches a performance ceiling due to an almost constant
noise floor. These experiments effectively validate the derived
CRBs in Theorem 1 and the analysis in (12), highlighting the
potential performance ceiling for challenging scenarios such
as resolving closely-located frequencies and separating weak
and strong sinusoids.

V. Conclusion
Spectral estimation is a fundamental problem in signal

processing, with the theoretical limits on parameter estimation
in the presence of noise characterized by the Cramér-Rao
bounds (CRBs). In this work, we studied spectral estimation
in the context of the Unlimited Sensing Framework (USF),
where the signal is modulo-folded prior to sampling. We
derived the CRBs for spectral estimation from noisy modulo-
folded measurements and established its relationship to the
conventional CRBs. Numerical experiments were conducted to
validate the derived bounds. These results provide a theoretical
benchmark for spectral estimation in the USF setting, offering
insights into the performance limits of parameter estimation
under non-linear sensing models.
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