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Abstract—Ranging using an LFMCW radar (Linear Fre-
quency Modulated Continuous Wave) amounts to estimating
frequency from the radar signal. However, the ranging accuracy
is nominally limited to a resolution that is equivalent to the
frequency resolution of the DFT. In this paper we break this
limit using a novel formula for single frequency estimation. This
formula is simple yet exact, and is able to handle the damping
effect which is prevalent in real-world signals. We validate our
formula on simulations and on real radar measurements. Our
formula is very fast, and is shown to provide sub-mm ranging
accuracy using the frequency estimation, and a µm-level accuracy
using the associated estimation of the phase difference.

Index Terms—Frequency estimation, Radar signal processing,
Super-resolution, Ranging accuracy.

I. INTRODUCTION

The proliferation of low-cost and robust radar sensors has
propelled a variety of applications such as vital sign monitor-
ing of human beings [1] and autonomous driving [2]. Linear
frequency modulated continuous wave (LFMCW) radar is one
of the most common radars due to its high signal-to-noise ratio
(SNR) and ranging resolution [3].
LFMCW Radar and Frequency Estimation: Ranging via
LFMCW radar amounts to estimating frequency from a sinu-
soidal signal [3]. The radar transmitter sends a chirp, i.e., a
signal with linearly increasing frequency f(t) = fc + tB/Tc

where B is the sweep bandwidth, Tc is the chirp duration,
and fc is the frequency of carrier wave. Typical values are:
fc = 60GHz, B = 4GHz and Tc = 0.1ms. As a result, the
transmitted radar chirp s(t) is characterized by

s(t) = p(t)ei2π(fct+(B/Tc)t
2/2).

p(t) models the chirp envelope. Assuming a single target at
distance d reflecting the transmitted chirp back, the time of
flight τ is given by τ = 2d/c where c is the speed of the light.
The reflection is mixed (i.e., multiplied) with the reference
pulse s(t) in the radar receiver, which can be modelized as

x(t) ∝ s∗(t− τ)× s(t)

∝ p∗(t− τ)p(t)ei2π[fcτ−
1
2

B
Tc

τ2+Bτ
Tc

t]

≈ p∗(t− τ)p(t)︸ ︷︷ ︸
≈|p(t)|2

ei2πfcτ · ei2π
Bτ
Tc

t,
(1)

We thank Mr. DENG Pu and Prof. WU Keli from the EE Dept. CUHK for
providing us the mmWave radar for doing experiments.

where 1
2

B
Tc
τ2 is negligible and p(t − τ) ≈ p(t) since τ ≪

Tc (nanoseconds vs hundred microseconds) when the target
distance d is smaller than 100m. Notice that the measured
signal x(t) is sinusoidal with a beat frequency given by
Bτ/Tc = 2Bd/(cTc), thereby expressing the relation between
frequency and range information.

In the radar community, it is common to ignore the envelope
term |p(t)|2 in (1) [3]. If we do so and assume that x(t)
contains one reflection at distance d, then capturing uniform
point-wise measurements leads to a sequence of samples

xn = Aeiφeiωn, n = 0, 1, . . . , N − 1. (2)

A ∈ R+ is the magnitude. φ ∈]− π, π] is the phase, and

ω = 4π
Bd

cTcfs
, (3)

where fs is the sampling frequency. This formulates the
ranging problem (finding d) as a frequency estimation prob-
lem (finding ω), a classic problem in signal processing. In
fact, assuming the frequency to have an imaginary part (i.e.,
Ω = ω + iα with α ∈ R) in this generic formulation, makes
it possible to take into account the damping effect in |p(t)|2
as we will see in this paper.

Estimate Small Displacements by Phase Difference: It is
known that the signal phase φ in (2) is sensitive to the distance
variations [4] and can be used to sense micro motions with
µm-level accuracy [5]. When the displacement is within the
range ambiguity (i.e. half of the carrier wavelength [4]), it can
be estimated from the phase difference: let φ1 and φ2 be the
phase before and after the displacement ∆d, respectively. With
some manipulations of (1), we have

∆d =
c∆τ

2
=

c(φ2 − φ1)

4πfc
. (4)

Overcome the Barrier of Range Resolution: In the radar
literature, the standard range resolution of an LFMCW
radar is c/(2B) which corresponds to the DFT resolution
(2π/#samples) in (2): for instance, the resolution of a typ-
ical consumer-level radar with bandwidth B = 4GHz is
3.75 cm. Such a resolution doesn’t always meet the accuracy
requirement in real applications. For example, a centimeter-
level ranging accuracy is desired for autonomous driving [6].
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To overcome this resolution barrier, it is necessary to super-
resolve the frequency in the radar signal. Numerous model-
based methods are available to this end (e.g. MUSIC [7],
ESPRIT [8]). However, they are rarely applied in practice
because of their lack of real-time properties [6] and their costly
memory needs [9].

Super-resolving the frequency by interpolating on the DFT
coefficients is generally much faster and has been explored
extensively [10] [11] [12]. For example, Jacobsen et al [13]
interpolated the frequency based on three DFT coefficients.
Aboutanios et al [14] proposed an iterative estimator using
two DFT coefficients. However, to the best of our knowledge,
none of these estimators is exact: they are not able to compute
the frequency even when given data is noiseless. Also, these
estimators assume the frequency is real-valued, i.e., the signal
has no damping effect. But many real-world signals (e.g. radar,
NMR [15] or speech [16]) are damped.
This Paper: We propose a simple yet exact formula to
estimate a single complex-valued frequency from just two
DFT coefficients. In simulations we show that by iterating the
formula for two times, the estimation uncertainty can achieve
Cramér–Rao bound (CRB) [17], the optimal variance for
unbiased estimates, for both damped and undamped sinusoid.
We validate the formula on real radar measurements acquired
in carefully designed experiments. We obtain promising ac-
curacies for both the absolute distances estimated from the
frequency, and for the small displacements estimated from the
phase difference.

II. FORMULA FOR ESTIMATING SINGLE FREQUENCY

We have shown in a recent paper that there exists a
surprisingly exact formula that provides directly the nearly op-
timal relationship between the frequency of a single-frequency
signal and two DFT coefficients [18]. In the sequel, we devise
a new formula which, contrary to [18], accounts for a possible
damping factor.

We define the Discrete Time Fourier Transform (DTFT) of
an N -points discrete signal {x0, x1, . . . , xN−1} by:

X(ω) =
∑N−1

n=0
xne

−iωn. (5)

Theorem 1. Assume that the samples xn are of the form

xn = a0e
iΩ0n, n = 0, . . . , N − 1.

where a0 ∈ C and Ω0 ∈ C. Given two (real-valued)
frequencies ω1 and ω2 such that ω2 − ω1 = 2π/N and the
DTFT X1 and X2 of xn at ω1 and ω2, then the (complex-
valued) frequency of the samples is given by

Ω0 = −i ln

(
eiω1

X1 −X2

X1 − e−i 2π
N X2

)
. (6)

Proof. Let u0 = eiΩ0 . Inserting a0u
n
0 in (5) and summing up

the geometric sequence provides the analytic expression of the
DTFT of the samples:

X(ω) = a0
uN
0 e−iNω − 1

u0e−iω − 1
.

Given that ω1 − ω2 = 2π/N , we find that

X1 = a0
uN
0 e−iω1N − 1

u0e−iω1 − 1
, X2 = a0

uN
0 e−iω1N − 1

u0e−i(ω1+2π/N) − 1
.

(same numerator) and so

X1

X2
=

u0e
−iω1e−2iπ/N − 1

u0e−iω1 − 1
.

Using basic algebra, we can finally extract

u0e
−iω1 =

X1 −X2

X1 − e−2iπ/NX2
,

which is the same as (6).

The L.H.S. of (6) is complex-valued (i.e.,Ω0 = ω0 + iα0)
with its real part ω0 ∈] − π, π] being the frequency and its
imaginary part α0 ∈ R being the damping factor. Of course,
if we know that the singal has no damping effect, only the real-
part of this formula needs to be considered. To use (6), we
need a suitable choice of ω1 and ω2 to evaluate the DTFT. An
effective way is to identify the peak ωDFT of the DFT spectrum
of the signal, and let ω1 = ωDFT−π/N and ω2 = ωDFT+π/N .
Asymptotic Variance of the Formula Below we compute an
asymptotic variance of (6) in a simplified scenario:

Proposition 1. Consider a noise model

yn = a0e
iΩ0n + vn, n = 0, . . . , N − 1

where the complex-valued samples vn are additive white
Gaussian noise with variance σ2. Suppose

1) the noise variance σ2 is sufficiently small.
2) Ω0 is real-valued, and
3) the formula (6) is applied with its input DTFT of yn

evaluated at [ω1, ω2] = Ω0 + [−π/N, π/N ].
Denote the result of (6) as Ω̂0 and the error of the real-valued
frequency δω0 = Re{Ω̂0} − Ω0. When N is sufficiently large,

E[δω2
0 ] =

π4

96︸︷︷︸
≈1.0147

12

N3|a0|2/σ2︸ ︷︷ ︸
CRB

.

The proof is given in the appendix. The variance E[δω2
0 ]

is about 1% higher than the CRB. This shows (6) is
nearly optimal even though only two DFT coefficients are
used. The third condition of Proposition 1 can be attained
by using the formula iteratively: let Ω̂0 be the results of
applying the formula once. Then we evaluate DTFT on
[ω1, ω2] = Re{Ω̂0}+ [−π/N, π/N ], respectively, and apply
(6) again to obtain a refined estimation. As shown in Sec. III,
one extra iteration is already nearly optimal.

III. SIMULATIONS

We validate (6) by running simulations to estimate single
frequency from undamped sinusoid in Fig. 1 and damped
sinusoid in Fig. 2. The root mean squared error (RMSE)
of the estimated frequency ω0 (i.e. the real part of Ω0) is
plotted together with CRB. With iterating twice, the formula
of this paper overlaps CRB in both Fig. 1 and Fig. 2. This
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(a) N=8, Undamped

(b) N=49, Undamped

Fig. 1: Simulations for estimating single frequency from
undamped sinusoid. 5000 noise realizations per SNR value.
The formula of this paper and A&M formula are iterated twice.

indicates the formula (6) is nearly optimal no matter the
signal is damped or undamped and no matter the number of
samples N is small or large. A&M formula [14] with two
iterations performs well for undamped signal with a large
number of samples N (see Fig. 1b). But it degrades when
N is small as shown in Fig. 1a, because A&M is not exact.
A&M also diverges from CRB for damped signal as it assumes
the signal has no damping effect. The subspace-based method
MUSIC [7] is slightly above the CRB, but it is computationally
expensive and is not suitable for real-time applications.

IV. EXPERIMENTS

We validate our algorithm on real radar data. We use the
low-cost mmWave sensor IWR6843AOP [19] from Texas
Instrument. The radar data is processed using Matlab 2021
on an i7-5930K processor with 64 GB memory.

A. Ranging Accuracy using Frequency

First, we evaluate the ranging accuracy of frequency by
measuring the relative movement between the radar and the
ground. As shown in Fig. 3, the radar is attached to a transla-
tion table, which makes it possible to move the radar vertically
with high precision, typically by steps of dtrue = 0.5mm. We
collect measurements before and after the movement. Then
we obtain the difference via d̂ = dafter − dbefore where dafter
and dbefore are computed from the estimation of frequency. We
moved the radar 28 times and obtained 28 measurements of

(a) N=8, Damped

(b) N=49, Damped

Fig. 2: Simulations for estimating single frequency from
damped sinusoid. 5000 noise realizations per SNR value. The
damping factor α is chosen such that the signal intensity
decreases around 90% from start to end, i.e., e−αN ≈ 0.1.

dtrue. All radar data contains 512 samples. The nominal range
resolution is 4.3 cm. The distance between the radar and the
ground are around 0.9m.

We compare the RMSE of ranging results from different
methods in Tab. I. Both the formula of this paper and the
A&M formula are iterated two times. Our formula achieves an

(a) The radar is fixed at the
bottom of the translation
table, facing downwards.

(b) The 0.5mm movement is
estimated by measuring the ab-
solute distance dbefore and dafter.

Fig. 3: Ranging single target from the frequency
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TABLE I: Ranging single target from the frequency: RMSE
of estimations and run time averaged over 28 measurements.

Methods This paper A&M MUSIC

RMSE (mm) 0.250 0.250 0.335

Run time (ms) 0.2 0.2 280

average ranging error of 0.25mm which is 172 times smaller
than the nominal resolution. Meanwhile the computation only
takes 0.2ms. This shows its great potential for real-time
application. A&M method has a similar performance with our
formula, probably because the radar signal has a large number
of samples and its damping effect is not signifiant. The error
of MUSIC is slightly worse. But MUSIC is computationally
expensive: it takes 280ms to estimate the frequency, which is
more than 1000 times slower than using our formula.

B. Measuring Small Displacement using Phase Difference

Correct Phase Difference: Once the frequency estimation Ω̂

is available, the phase φ and the magnitude A are given by:

Âeiφ̂ =
1

N

N−1∑
n=0

xne
−iΩ̂n = Aeiφ

N−1∑
n=0

ei(ω−Ω̂)n/N, (7)

where xn denotes the samples of the radar signal in (2).
Clearly, the frequency estimation error ω − Ω̂ will impact the
estimated phase. This impact can be corrected when we solve
small displacements using the phase difference. For simplicity,
assume Ω̂ is real-valued, i.e. Ω̂ = ω̂ ∈]− π, π]. Then, from (7)
we obtain:

Âeiφ̂ =
A

N
e
i
(
φ+N−1

2
(ω−ω̂)

) sin
(

N(ω−ω̂)
2

)
sin

(
ω−ω̂
2

) ⇒ φ̂ = φ+
N − 1

2
(ω−ω̂).

Let {φ1, φ̂1} ({ω1, ω̂1}) be the true and the estimated phase
(frequency) before the small displacement ∆d. And {φ2, φ̂2}
({ω2, ω̂2}) be their counterparts after the displacement. Then
the estimated phase difference is:

φ̂2−φ̂1 = φ2−φ1+
N − 1

2
(ω2−ω1)+

N − 1

2
(ω̂1−ω̂2). (8)

Both φ2−φ1 and ω2−ω1 are proportional to the displacement
∆d. By inserting (3) and (4) into (8), we can compute ∆d as:

∆d =
c
[
φ̂2 − φ̂1 +

N−1
2 (ω̂2 − ω̂1)

]
2π

[
2fc +

(N−1)B
fsTc

] . (9)

Experiment: Sensing micro motion using the phase can
achieve µm-level accuracy [4]. Hence, to evaluate the accuracy
using the phase difference, we must devise an experiment
which can provide a ground truth step size with µm-level
precision. Using the translation table in Sec. IV-A is not
expected to have such an error-level because its minimum
moving division is 10µm.

To provide a highly precise step size, we devise the follow-
ing simple scheme:

TABLE II: Results of measuring small displacement using the
phase difference. The units for all values are µm. The RMSE
of the estimated step size (from its nominal value) are averaged
over 1K measurements per session.

Session 1 2 3 4 5 6 7

Step size
(nominal) 9.5 10.3 11.3 9.0 11.7 13.0 11.5

RMSE of
this paper 3.19 3.22 3.62 3.78 4.00 4.52 4.69

• The target (a small copper plate) is moved slowly towards
the radar with a uniform speed v. Typically v ≈ 1cm/s.

• The radar measures the moving target 1K times uninter-
ruptedly with an interval Tm = 1ms. Hence, the whole
measurement takes 1s.

The key of this experiment is to maintain a uniform speed
when the target is moving. This is easy because the moving is
slow (∼ 1cm/s) and the moving duration is short. In particular,
the target is moved by hand smoothly on a table for 3s. We
record the moving length and compute the speed. The radar
will measure the moving target during this 3s. The nominal
step size is given by vTm ≈ 10µm. Even when the true speed
deviates from its estimation by 50% (which is too pessimistic),
the error on the step size is 5µm, which is still not big.

In each session, the nominal step size (given by vTm)
is measured 1000 times. We measure seven sessions with
different nominal step sizes and estimate it using (9). The
ranging resolution is increased to 7.8cm because we have to
compromise the resolution for a shorter measurement interval
Tm, which is 1ms in our case. The distance between the radar
and the target is around 0.8m.

Results: As shown in Tab. II, our formula obtains RMSE
ranges from 3.19 to 4.69µm, which is more than 15 000
times smaller than the ranging resolution. This shows the great
potential to apply our formula in precise industrial application
such as vibration monitoring and machine calibration [20].
Other methods (A&M and MUSIC) achieves similar RMSE
with a difference no more than tens of nanometers.

V. CONCLUSION

In this paper, we proposed a formula to estimate a single fre-
quency using two DFT coefficients which is able to handle the
damping effect. As demonstarted in simulations, the formula
is nearly optimal in estimating frequency from both damped
and undamped sinusoid. The formula also performs well on
real radar data. For absolute distances computed from the
frequency, the formula achieves an accuracy that is two orders
of magnitude higher than the nominal resolution (0.25mm
vs 4.3cm), and is significantly faster than the subspace-based
method MUSIC. For small displacements computed from the
phase differences, the obtained RMSE are more than four
orders of magnitude smaller than the resolution.
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APPENDIX: PROOF OF PROPOSITION 1
Proof. The noisy DTFT at ω1 is given by

N−1∑
n=0

yne
−iω1n = X1 +

N−1∑
n=0

vne
−iω1n = X1 + ε1,

where X1 is the noiseless DTFT at ω1, and ε1 is the (complex-
valued) noise with E[|Re{ε1}|2] = E[|Im{ε1}|2] = Nσ2. Let X2

be the noiseless DTFT at ω2 and ε2 be the associated noise,
we have

i · (Ω̂0 − Ω0) = ln
X2 + ε2 −X1 − ε1

(X2 + ε2)e
−i 2π

N −X1 − ε1
− ln

X2 −X1

X2e
−i 2π

N −X1

= ln
(X2 −X1 + (ε2 − ε1))

(
X2e

−i 2π
N −X1

)
(
X2e

−i 2π
N −X1 + ε2e

−i 2π
N − ε1

)
(X2 −X1)

= ln

[
X2 −X1 + (ε2 − ε1)

X2 −X1

]
−

ln

[
X2e

−i 2π
N −X1 + ε2e

−i 2π
N − ε1

X2e
−i 2π

N −X1

]

= ln

[
1 +

ε2 − ε1
X2 −X1

]
− ln

[
1 +

ε2e
−i 2π

N − ε1

X2e
−i 2π

N −X1

]

≈ ε2 − ε1
X2 −X1

− ε2e
−i 2π

N − ε1

X2e
−i 2π

N −X1

=
X2

(
1− e−i 2π

N

)
(X2 −X1)

(
X2e

−i 2π
N −X1

)
︸ ︷︷ ︸

f1

ε1+

X1

(
e−i 2π

N − 1
)

(X2 −X1)
(
X2e

−i 2π
N −X1

)
︸ ︷︷ ︸

f2

ε2.

The error of the real-valued frequency δω0 is given by

δω0 =
1

2

[
(Ω̂0 − Ω0) + (Ω̂0 − Ω0)

]
=Re{f1}Im{ε1}+ Im{f1}Re{ε1}+
Re{f2}Im{ε2}+ Im{f2}Re{ε2}.

Then,

E
[
|δω0|2

]
=
(
Re{f1}2 + Im{f1}2

)
Nσ2+(

Re{f2}2 +Re{f2}2
)
Nσ2

=
(
|f1|2 + |f2|2

)
Nσ2.

When N is sufficiently large,

lim
N→+∞

|f1| = lim
N→+∞

|X2| ·
∣∣∣1− e−i 2π

N

∣∣∣
|X1 −X2| ·

∣∣∣X2e
−i 2π

N −X1

∣∣∣
=

1

|a0|

2N
π

· 2π
N

4N
π

· 4N
π

=
1

|a0|
π2

4N2
.

Note |f1| = |f2| since [ω1, ω2] = Ω0 + [−π/N, π/N ]. Hence,

E
[
|δω0|2

]
= 2

1

|a0|2
π4

16N4
Nσ2 =

π4

96

12

N3|a0|2/σ2
.
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