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Abstract—Mainstream signal processing theory and methods are primarily
designed for synchronous sampling architectures, where samples are
captured at predefined time instants. While this fits well with Shannon’s
framework, in the absence of synchronous structure, even fundamental
tools like filtering and convolution break down. Alternatively, event-driven
or time-encoded sampling offers a more efficient method by capturing
signals only when an event occurs. This approach, reminiscent of the
“spiking neuron” behavior in the brain, can lead to low-power electronic
implementations. Unlike Shannon’s framework, measurements in this
scheme are defined by asynchronous sampling, presenting unique challenges.
One such open problem is performing spectral estimation from asynchronous
samples. In this paper, we propose a novel approach that directly enables
spectral estimation from asynchronous measurements. Empirically, our
algorithm offers robust, high-resolution spectral information, with a lower
sampling rate on trigger times. Beyond numerical experiments, we build
an event-driven sampling hardware utilizing asynchronous sigma-delta
modulators to validate our approach. These hardware experiments further
demonstrate the robustness and practical applicability of our method.

Index Terms—Event-driven, nonuniform sampling, non-linear reconstruc-
tion, spectral estimation, time-encoded sampling.

I. INTRODUCTION

Event-Driven Sampling. How to represent a continuous-time signal
as a discrete sequence is at the core of the current digital acquisition
protocol. At the core of current digitalization technology, the well-known
Shannon-Nyquist sampling scheme [1] represents a continuous-time,
bandlimited signal based on its amplitude samples taken at or above
the so-called Nyquist rate by utilizing a synchronous clock. On a
different perspective, one can circumvent the synchronous setup and
sample the signal only when there is an “event”. This leads to an
alternative sampling paradigm that is known by, EVENT-DRIVEN [2],
TIME-ENCODED [3], [4], ASYNCHRONOUS [5]–[8], IRREGULAR [9],
[10], SEND-ON-DELTA Sampling [11], [12], which has been widely
studied due to its potential benefit of being power efficient.

Related Works. Current works on the event-driven sampling or EDS
predominantly focus on bandlimited signal classes. Recently, several
papers have started to consider time-domain sparse signals [13]–[16].
Apart from the bandlimited and sparse signal classes, another class of
signals that plays a pivotal role in application areas is sum of sinusoids
(SoS). The study on SoS can be traced to the second millennium BC,
in the context of astronomy and cosmology. Dating back to Prony
[17], the utility of spectra analysis has motivated the sub-field of
the so-called high-resolution frequency estimation, which has been
thoroughly studied in the 1970-1990s [18]–[23]. Despite their prevalence
and importance, such signals have not been considered in the EDS
literature. The main reasons can be attributed to the following aspects.
Firstly, SoS can be interpreted as a specific case of bandlimited signals.
However, this standpoint leads to suboptimal recovery since it does not
leverage the parametric structure of the sinusoids, as shown in the
experimental results in Section IV. Secondly, algorithmic approaches
based on time-decoding [3] do not directly translate to parametric

The work of the authors is supported by the UK Research and Innovation
council’s FLF Program “Sensing Beyond Barriers via Non-Linearities” (MRC
Fellowship award no. MR/Y003926/1).

signals [13]–[16], [24]. In this context, the consideration of sparse
signals is only very recent and it is natural to consider time-domain
sparse signals as a first prototype example. Finally, EDS ADCs are still
not mainstream yet and hence, such hardware has not been deployed
for practical problems such as direction-of-arrival (DOA) estimation
that intrinsically requires spectral estimation.

In a different incarnation, spectral estimation via low-resolution
sampling is also at the heart of one-bit quantized DOA estimation [25].
The difference being, in one-bit DOA estimation, permanent information
loss occurs due to concurrent quantization on both amplitude and
time; while, in EDS spectral estimation, exact parameter retrieval is still
possible due to the non-uniformly spaced trigger times. However, how to
achieve this direct parameter retrieval is particularly challenging, as the
asynchronous sampling setup instigates a stalemate with conventional
spectral estimation methods that typically rely on uniform sampling.

Contributions. In this paper, we present an event-driven spectral
estimation method called ED-Prony via asynchronous sampling, that
allow direct frequency estimation from the time-encoded measurements.
Compared to the conventional sequential reconstruction (i.e. , signal
recovery followed by frequency estimation), ED-Prony enables robust,
super-resolved, sinusoidal parameter retrieval with lower sampling rate
(trigger times). Our main contributions are as follows.
• We propose a novel algorithm that directly extracts the spectral

information from the time-encoded measurements (see Algorithm 1).
Our algorithmic machinery utilizes a coarse-to-fine strategy that de-
constructs non-linear optimization problem into sparse approximation,
which results in a computationally efficient implementation.
• As practical validation of event-driven sampling has been rarely

reported in literature, the validity of designed algorithms in real-world
scenarios remains unknown. To this end, we build EDS hardware
utilizing asynchronous sigma-delta modulators (ASDM) to validate
our approach, demonstrating the robustness and super-resolution
capability of ED-Prony in real-world settings (see Section IV).

Notation. Integers, reals, and complex numbers are denoted by Z,R
and C, respectively. We use IN = {0, · · · , N −1}, N ∈ Z+ to denote
the set of N contiguous integers. The indicator function on domain D is
denoted by 1D . Continuous functions are written as f (t) , t ∈ R; their
discrete counterparts are represented by f [n] = f (t)|t=nT , n ∈ Z.
Continuous functions and discerete sequences are written as f (t) , t ∈ R
and g [n], respectively. are written as ; their discrete counterparts are
represented by g [n] = g (t)|t=nT , n ∈ Z where T = 2π/ωs > 0 is
the sampling period. Vectors and matrices are written in bold lowercase
and uppercase fonts, e.g. f ∈ RN and F ∈ RN×M . The max-norm
of a function is defined as, ∥f∥∞ = inf{c0 ⩾ 0 : |f(t)| ⩽ c0}; for
sequences, we use, ∥f∥∞ = maxn |f [n]|. The ℓ2-norm of a sequence
is defined as ∥f∥2 = (

∑N−1
n=0 |f [n]|

2)1/2.

II. EVENT-DRIVEN SAMPLING OF SUM OF SINUSOIDS

Problem Formulation. The EDS scheme used in this paper is depicted
in Fig. 1, which encodes the amplitude information of the input
signal f(t) as a time sequence {tn}n∈Z. The bounded input signal
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Fig. 1. The block diagram and hardware implementation of the EDS paradigm.

f(t), |f(t)| ⩽ c < b, is shifted by a constant amount ±b before being
fed into the integrator. The bias b ensures that the integrator’s output
y(t) is a positive (negative) increasing (decreasing) function of time.
There are two possible operating modes in steady state. In the first
mode, the output of the EDS is in state z(t) = −b and the input to
the Schmitt trigger increases from −δ to δ. When the output of the
integrator reaches the maximum value δ, a transition of the output
signal z(t) from −b to b is triggered and the feedback changes the
sign (becomes negative). In the second mode, the EDS is in the state
z(t) = b and the integrator output decreases from δ to −δ. When
the minimum value −δ is achieved, z(t) will reverse to −b. Thus,
while the transition times of the output z(t) are non-uniformly spaced,
the modulus of z(t) remains constant, i.e. |z(t)| = b. As a result, a
transition of the output from −b to b or vice-versa takes place every
time the integrator output reaches the triggering threshold δ or −δ.
The time when this threshold is attained depends on f(t) as well as on
the design parameters κ, δ and b. The EDS maps amplitude information
into timing information via a signal-dependent sampling paradigm.

In this paper, we focus on the sum of sinusoids (SoS) input

f(t) =
∑K−1

k=0
cke

ȷωkt, Ω
def
= maxk |ωk| (1)

which generates a sequence of time stamps {tn}n∈Z. ωk = 2πfk, k ∈
IK are the frequencies of sinusoids. Given noisy non-uniformly spaced
time sequence {tn}n∈Z from the EDS paradigm, our goal is to robustly
retrieve the sinusoidal parameters {ck, ωk}k∈IK .

Spectral Estimation via Time-Decoding. As the input signal f(t) is
Ω-bandlimited, an intuitive approach to estimate sinusoidal parameters
is sequential reconstruction, i.e. time-decoding (TDM) [2], [3] followed
by spectral estimation [26]–[28]. We shall show this sequential
reconstruction approach and state the recovery conditions.

Step # 1: Recovery of f(t) via Time-Decoding.
As illustrated in the block diagram in Fig. 1 (a), the sequence of

trigger times {tn}n∈Z is generated by the recursive equation∫ tn+1

tn

f(t) dt = (−1)n [−b (tn+1 − tn) + 2κδ] . (2)

Without any loss of generality, a simple version of the EDS will be
leveraged, assuming |f(t)| ⩽ c < b = 1 and κ = 1/2, leading to∫ tn+1

tn

f(t) dt = (−1)n [δ − tn+1 + tn] . (3)

From (3), we shall show that the density of trigger times is bounded:

Lemma 1. For an arbitrary bounded signal f(t) with |f(t)| ⩽ c < 1,
the distance between consecutive trigger times tn and tn+1 is bounded

δ

1 + c
⩽ tn+1 − tn ⩽

δ

1− c
.

Proof. With |f(t)| ⩽ c < 1, we know

−c(tn+1 − tn) ⩽
∫ tn+1

tn

f(t)dt ⩽ c(tn+1 − tn).

By replacing the integral in (3) and solving for tn+1 − tn, we obtain
the desired result.

f(t) can be recovered via a sequence of recursive functions: Denote
by f = f(t). Let the operator A be defined by

Af =
∑

n∈Z
f(sn)gn(t), gn(t)

def
=

(
hΩ ∗ 1[tn,tn+1]

)
(t) (4)

where sn = (tn+1 + tn)/2, and hΩ(t) = sin (Ωt) /πt. 1D is the
indicator function on domain D. Let fm(t) be a sequence of bandlimited
functions defined by the recursion

fm+1 = fm +A (f − fm) ,m ∈ N

with the initial condition f0 = Af . Then, f(t) can be recovered from
{tn}n∈Z, as limm→∞ fm(t) = f(t), provided that, δ < (1−c)π

Ω
.

Step # 2: Spectral Estimation via Prony’s Method.
Once f(t) is reconstructed, {ωk}k∈IK can be retrieved from a

sequence of uniform samples {f(mT )}mIM via Prony’s method [26],
provided that T < π/Ω and M ⩾ 2K. Having {ωk}k∈IK known,
{ck}k∈IK can be obtained via solving a linear system of equations.

Remarks. Throughout this sequential reconstruction, we can find that:
i) The time-decoding mechanism solely leverages the bandlimited-

ness of f , without considering its sinusoidal structure.
ii) Our core problem is parameter estimation, which requires a

different solving strategy than that used for signal reconstruction.
As a result, the sequential reconstruction approach is likely to
compromise the robustness and resolution on spectral estimation,
leading to sub-optimal performance in real-world scenarios.

III. ED-Prony: EVENT-DRIVEN FREQUENCY ESTIMATION

To fit the essence of spectral estimation problem, in this paper, we
propose an estimation method that enables direct sinusoidal parameter



estimation from the event-driven samples. The key idea here is that,
sinusoidal structure in (1) allows for establishing a parametric model
of the event-driven time sequences. Hence, utilizing a model-fitting
method, the sinusoidal parameters can be robustly retrieved via solving
a non-convex optimization problem.

Our starting point is the non-uniform measurements at the output of
the integrator. Combining (1) and (3), we have

y[n] =

∫ tn+1

tn

f(t) dt
(1)
=

∑K−1

k=0
ck

(
eȷωktn+1 − eȷωktn

)
(5)

where n ∈ IN and ck = ck
ȷωk

, k ∈ IK . Notice that, {y[n]}n∈IN can
be calculated from the time sequence {tn}n∈IN+1

y[n]
(3)
= (−1)n [δ − (tn+1 − tn)] (6)

which implicitly “encode” the sinusoidal parameters {ck, ωk}k∈IK .

Sparse Spectral Estimation from EDS Samples. (6) holds in noiseless
case. In real-world scenarios, (5) translates to

y[n] =
∑K−1

k=0
ck

(
eȷωktn+1 − eȷωktn

)
+ η[n], n ∈ IN (7)

where η models noise and hardware imperfections. From hardware
experiments (see Section IV), we have empirically identified that η is
dominated by time quantization on {tn}n∈IN+1 . Denote by ∆t the
quantization step on the time sequence, then η is bounded by

|η[n]| ⩽ ση
def
= 4 ∥ck∥ℓ1 sin(

Ω∆t
2

) (8)

provided that ∆t≪ π
Ω

, which holds naturally in practice. With (7)
and (8), the direct spectral estimation problem can be posed as

min
ck,ωk

∑N−1

n=0

∣∣∣∣y[n]−∑K−1

k=0
ck

(
eȷωktn+1 − eȷωktn

)∣∣∣∣2 . (9)

The minimization in (9) is challenging, due to the structure of the setup.
In order to tackle this problem, we opt for a coarse-to-fine strategy
where the goal is to split (9) into two tractable sub-problems, viz. P1
that addresses on-grid estimation of {ωk}k∈IK via sparse recovery and
P2 that attains off-grid spectral estimation via perturbation theory.

We outline the details of this two-stage minimization as follows.

P1: On-Grid Sparse Approximation Since the objective function
in (9) is highly non-linear and non-convex, the key insight here is to
relax the original problem utilizing on-grid approximation. This allows
for solving the relaxed problem via sparse recovery techniques: Let
p(ω) ∈ CN where [p(ω)]n = eȷωtn+1−eȷωtn , hence, an approximate
problem to (9) is given by

P1 min
c

∥c∥ℓ1 , s.t. ∥y −PIc∥2 ⩽
√
Nσ (10)

where PI = [p(ω0), · · · ,p(ωI)] and ωi = 2Ωi−Ω(I+1)
I+1

, i ∈ II+1.
Hence, the minimizer to (10), i.e. {ω̃k}k∈IK , offers a K-sparse solution
that approximates the ground-truth frequencies {ωk}k∈IK up to an
error bounded by the grid step 2Ω

I+1
. (10) is a convex optimization

problem and can be solved efficiently via methods such as LASSO.

P2: Off-Grid Spectral Estimation via Perturbation With initial
estimates {ω̃k}k∈IK known from solving (10), our next goal is to further
refine {ω̃k}k∈IK to reduce the on-grid approximation error. To this end,
we leverage the perturbation method: Let ωk = ω̃k +∆ωk, |∆ωk| ⩽
2Ω
I+1

. The perturbation term ∆ωk is sufficiently small, provided that I

Algorithm 1 Event-Driven Prony

Input: Time sequence {tn}Nn=0.
1: Compute the samples {y[n]}N−1

n=0 via (6).
2: Compute {c[0]k , ω

[0]
k }

K−1
k=0 via solving (10).

3: for m = 1 to max. iterations do
4: Update c̃

[m]
k , ω̃[m] via solving (12).

5: if (14) holds then
6: Terminate all loops;
7: end if
8: end for

Output: The sinusoidal parameters {ck, ωk}k∈IK .

is large enough. Hence, (7) translates to

y[n] =
∑K−1

k=0
ck
Ä
eȷ(‹ωk+∆ωk)tn+1 − eȷ(‹ωk+∆ωk)tn

ä
+ η[n]

=
∑K−1

k=0
(ȷeȷ‹ωktn+1tn+1 − ȷeȷ‹ωktntn)ck∆ωk

+
∑K−1

k=0
(eȷ‹ωktn+1 − eȷ‹ωktn)ck + o(∆ωk) + η[n]. (11)

Let q(ω) ∈ CN , [q(ω)]n = ȷeȷωtn+1tn+1 − ȷeȷωtntn. As a result,
the perturbations can be found by solving the following minimization

P2 min
c,r

∥y −PKc−Qr∥22 (12)

where PK = [p(ω0), · · · ,p(ωK−1)], Q = [q(ω0), · · · ,q(ωK−1)]
and r = c⊙∆ω (⊙ denotes Hadamard product operation). (12) is a
least-squares problem that boils down to solving a linear system of
equations, i.e. its closed-form solution is given by,

[c⊤, r⊤]⊤ = ([PK ,Q]
H

[PK ,Q])−1[PK ,Q]
H

y.

Once ∆ω is obtained, we can update the frequency estimates via
ω̃k ← ω̃k +∆ωk, k ∈ IK .

Convergence. The proposed event-driven spectral estimation algorithm
(ED-Prony) is bound to converge to at least some local minimum point
[29], since the minimization in (12) results in

J
Ä
c̃
[m+1]
k , ω̃[m+1]

ä
⩽ J

Ä
c̃
[m]
k , ω̃[m]

ä
(13)

where J
Ä
c̃
[m]
k , ω̃[m]

ä
=

∥∥∥y −PK c̃
[m]
k

∥∥∥
2
. The ED-Prony algorithm

converges in a few steps if the separation between any two frequencies
is sufficiently large. We keep iterating the frequency refinement via
solving (12) until the following criterion is satisfied

∥y −PKc∥2 ⩽
√
Nσ (Stopping Criterion). (14)

In other words, in the presence of distortions such as quantization and
noise, we can only retrieve {ck, ωk}k∈IK up to a tolerance level of
ση . The algorithmic procedure is summarized in Algorithm 1.

IV. NUMERICAL AND HARDWARE EXPERIMENTS

The overarching goal of our experiments is to validate the robustness
and super-resolution capability of the proposed ED-Prony approach,
utilizing lower sampling rate on trigger time sequence. In particular,
through a series of 6 experiments, we show that the spectral information
can be directly retrieved from the event-driven trigger times. Utilizing an
asynchronous sigma–delta modulation implementation, we demonstrate
frequency super-resolution up to 2 Hz in real-world scenarios, where
the sequential reconstruction approach fails.

In time-decoding based sequential reconstruction (TDM), we use
matrix pencil [22], [23] for spectral estimation. We use g̃ (f̃k)
and ḡ (f̄k) to denote the signal recovery (frequency estimate)



TABLE I
NUMERICAL AND HARDWARE EXPERIMENTAL PARAMETERS AND PERFORMANCE EVALUATION.

Figure N fs (ED-Prony) f̄s (TDM) κ× 10−4 δ b ∥g∥∞ fk f̃k (ED-Prony) f̄k (TDM) E2

Ä
fk, f̃k

ä
E2

(
fk, f̄k

)
E2(g, g̃) E2(g, ḡ)

(kHz) (kHz) (Hz) (Hz) (Hz)
Numerical Experiments

Fig. 2 561 3.50 7.00 4.38 1.50 3.00 1.80 [23.0, 40.0, 42.0] [23.29, 40.41, 41.80] [22.95, 41.56, 56.10] 9.71× 10−2 6.71× 101 6.68× 10−3 3.30× 10−2

— 813 6.00 6.00 4.38 1.50 3.50 2.29 [19.0, 20.0, 29.0] [18.56, 19.84, 29.04] [19.65, 29.02, 38.55] 7.37× 10−2 5.76× 101 2.06× 10−3 2.66× 10−2

— 853 80.00 400.00 4.38 1.50 3.10 1.90 [8.0, 26.7, 27.0] [8.01, 26.59, 26.97] [8.00, 26.81, 26.90] 4.20× 10−3 7.25× 10−3 1.17× 10−5 7.09× 10−6

Hardware Experiments
— 3116 10.00 100.00 3.82 0.95 4.27 1.51 [49.0, 59.0, 69.0] [49.10, 59.01, 68.93] [27.98, 57.88, 72.89] 4.88× 10−3 1.53× 102 6.68× 10−5 1.29× 10−3

— 3055 10.00 100.00 3.48 0.95 4.35 1.53 [54.0, 59.0, 64.0] [54.01, 58.97, 64.01] [0.00, 58.40, 69.67] 3.06× 10−4 9.83× 102 5.06× 10−5 6.44× 10−4

Fig. 3 3078 10.00 100.00 3.52 0.95 4.20 1.51 [57.0, 59.0, 61.0] [56.70, 59.13, 61.04] [0.00, 58.77, 138.93] 3.68× 10−2 3.11× 103 5.22× 10−5 7.68× 10−4

Time-Encoded Measurementsa

Signal Recoveryb

Fig. 2. Numerical Experiment: (a) Time sequence and (b) signal recoveries. The
ground-truth frequencies are fk = [23, 40, 42]Hz. The sequential reconstruction
is sensitive to time quantization, while ED-Prony is robust to super-resolve
frequency separation of 2 Hz.

by Event-Prony (ED-Prony) and sequential reconstruction (TDM)
methods, respectively. We use the mean-squared error, defined as
E2

Ä
fk, f̃k

ä
= 1

K

∑K−1
k=0 |fk − f̃k|2 to assess the frequency estimation

error. Similarly, we use E2(g, g̃) =
1
M

∑M−1
m=0 |g(mT ) − g̃(mT )|2

(T < π/Ω) to measure signal recovery error. Experimental parameters
such as, ground-truth frequencies fk, dynamic range ∥f∥∞, sampling
rate (ED-Prony: fs, sequential reconstruction: f̄s), bias b, among others
are tabulated in the first row of Table I, respectively.

Numerical Experiments. We conduct three experiments to validate
the super-resolution capacity of ED-Prony: we gradually reduce the
minimum frequency separation from 2 Hz to 0.3 Hz. As outlined
in Table I, the sequential reconstruction approach is sensitive to
quantization on trigger time sequence, resulting in distortion in signal
reconstruction as well as the subsequent spectral estimation (see Fig. 2
(b)). Utilizing a robust estimation method, ED-Prony successfully
super-resolve closely-located frequencies in all scenarios.

Hardware Experiments. We further conduct three hardware experi-
ments to show the practicability and robustness of ED-Prony algorithm
in real-world scenarios. We build EDS hardware based on asynchronous
sigma–delta modulator that implements the sampling pipeline depicted
in Fig. 1 (b). The input signal f(t) is generated by TG5011A signal
generators via amplitude modulation (AM). The experimental parameters
and results are tabulated in Table I.

In each experiment, we keep the center frequency (i.e. 59 Hz) fixed
and vary frequency separation from 10 Hz to 2 Hz to test the limits of

Time-Encoded Measurementsa

Signal Recoveryb

Fig. 3. Hardware Experiment: (a) Time sequence and (b) signal recoveries. The
ground-truth frequencies are fk = [57, 59, 61] Hz. Despite 10× downsampling,
ED-Prony super-resolves frequency separation up to a resolution of 2 Hz, where
the sequential reconstruction fails.

our ED-Prony algorithm. As illustrated in Fig. 3 (b), the sequential
reconstruction encounters bottleneck of spectral resolution, due to
reconstruction distortion arising from time quantization on {tn}n∈IN+1 .
As a result, only one frequency component is retrieved by the sequential
method and the rest are deviated. Leveraging a coarse-to-fine sparse
recovery strategy, the proposed ED-Prony algorithm achieves accurate
frequency estimation in all challenging scenarios as outlined in Table
I, despite the lower sampling rate on trigger times. This effectively
corroborates the practical utility and super-resolution capability of the
ED-Prony method in various real-world applications.

V. CONCLUSION

Event-driven sampling (EDS) is an alternative paradigm to the
Shannon-Nyquist sampling framework, which converts amplitude
information into a sequence of non-uniform time stamps. In this
paper, we focus on the sum of sinusoids (SoS) signals and design
a novel algorithm that enables robust and super-resolved spectral
estimation directly from its time-encoded measurements. This method
is robust to quantization on trigger times and offers a high-resolution
spectral estimation. We go beyond numerical experiments and also
provide comprehensive hardware validations of our approach, thus
bridging the gap between theory and practice, while showcasing the
potential benefits of our method. This also unlocks new opportunities
for extending ED-Prony to one-bit sampling applications, such as EDS
DOA estimation and radar tracking.
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