arXiv:2510.16948v1 [cs.IT] 19 Oct 2025

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. XX, NO. X, OCT 2025 1

Unlocking Off-the-Grid Sparse Recovery
with Unlimited Sensing:
Simultaneous Super-Resolution in Time and Amplitude

Ruiming Guo and Ayush Bhandari

IEEE Journal of Selected Topics in Signal Processing (to appear).

Abstract

The recovery of Dirac impulses, or spikes, from filtered measurements is a classical problem
in signal processing. As the spikes lie in the continuous domain while measurements are discrete,
this task is known as super-resolution or off-the-grid sparse recovery. Despite significant theoretical
and algorithmic advances over the past decade, these developments often overlook critical challenges
at the analog—digital interface. In particular, when spikes exhibit strong-weak amplitude disparity,
conventional digital acquisition may result in clipping of strong components or loss of weak ones
beneath the quantization noise floor. This motivates a broader perspective: super-resolution must
simultaneously resolve both amplitude and temporal structure. Under a fixed bit budget, such
information loss is unavoidable. In contrast, the emerging theory and practice of the Unlimited
Sensing Framework (USF) demonstrate that these fundamental limitations can be overcome. Building
on this foundation, we demonstrate that modulo encoding within USF enables digital super-
resolution by enhancing measurement precision, thereby unlocking temporal super-resolution beyond
conventional limits. We develop new theoretical results that extend to non-bandlimited kernels
commonly encountered in practice and introduce a robust algorithm for off-the-grid sparse recovery.
To demonstrate practical impact, we instantiate our framework in the context of time-of-flight imaging.
Both numerical simulations and hardware experiments validate the effectiveness of our approach under
low-bit quantization, enabling super-resolution in amplitude and time.

Index Terms
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I. INTRODUCTION

Consider the problem of recovering echoes of backscattered light, where each pulse-echo corre-
sponds to an object at a specific depth. Since light travels roughly 30 centimeters (cms) in one
nanosecond (ns), resolving objects separated by just a cm requires an analog-to-digital converter (ADC)
capable of sub-ns temporal resolution; a requirement that is technologically prohibitive. Although
this particular example relates to light-based 3D imaging [1]—a scenario discussed later in this
paper—similar challenges also arise in widespread areas such as radar systems [2], DNA profiling
[3], optical coherence tomography [4], terahertz sensing [5], super-resolution microscopy [6], and
radio-astronomy [7].

_ Fig. 1: Conventional systems
— Signal . . with fixed digital resolu-
— Quantized Signal (B = 3 Bits) tion cannot achieve simulta-
— Quantization Noise (Modulo Signal) neous amplitude and tempo-

Strong Component I RICECROU—  ral super-resolution because

Weak Component weak signals are obscured
1
Lost due to Quantization
4

by coarse quantization and
N

rendered unresolvable. The
e 7 i USF addresses this limitation
nlimited Sensing: Signal Recovery from .
Quantization Noise (Modulo Signal) Preserved in USF

Dynamic Range

o

Amplitude (a.u.)

by enabling digital super-
resolution, which enhances
‘ measurement precision and
0 o _ , _ Time (Sec)  facilitates super-resolution in

——  High Digital Resolution and Dynamic Range for the same Bit Budget both amplitude and time (see

Fig. 2).

tDigital Super-Resolution

In scientific and engineering disciplines, this challenge is frequently termed the super-resolution
(SRes) problem, aptly named because it involves recovering fine-scale features from coarse-scale
measurements. Mathematically, the problem can be abstracted as recovering sparse spikes (or Dirac

masses),
K-1

sk (t) = Lkld(t—T]k]), {T,7}€eR (1)
k=0

from filtered measurements,

gln] = g(nT), n=0,...,.N—1, T>0
g2 (sxxv) ()= Y TKw(t—7k) @)

where 1) represents a smooth kernel and 7" is ADC’s temporal resolution. The goal of SRes is to
recover the off-the-grid, continuous-time signal sk (¢) from the discrete samples g[n|, which lie on a
coarse temporal grid determined by T'.

One of the earliest solutions to this problem dates back to the seminal work of de Figueiredo & Hu
(1982) [2], who showed that 2K measurements suffice to recover a continuous-time, K -sparse signal,
sk (t) using Prony’s method—a foundational approach in spectral estimation. This method has since
underpinned key developments in areas such as spike deconvolution [3], [8], finite-rate-of-innovation
(FRI) sampling [9] and sub-Nyquist sampling [10]. Over the past decade, there has been a renewed
interest in bridging finite-dimensional measurements with infinite-dimensional solution space. Notable
contributions in this direction include the work of Bredies et al. [11], Candés & Fernandez-Granda
[12], Tang et al. on compressed sensing off the grid [13], and the total variation (TV) regularization
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approach by Duval & Peyré [14], among others. For a comprehensive overview, we refer the reader
to the excellent survey by Chi & Ferreira Da Costa [15].

I-A: What’s Missing in Previous Art? In practice, ADCs bridge analog and digital domains but are
fundamentally constrained by a trade-off: for a fixed bit-budget, one cannot simultaneously achieve

high dynamic range (DR) and high digital resolution (DRes). Improving one typically compromises
the other. Prioritizing DR results in coarse quantization, causing (i) weak signals to be buried beneath
the noise floor in the presence of strong components, as illustrated in Fig. 1, and (ii) degradation in
algorithmic SRes performance due to elevated quantization noise. Conversely, optimizing for DRes
leads to clipping of high DR or HDR signals, causing irreversible information loss and breakdown
of SRes methods [16]. Although SRes is well explored, its hardware validation is limited, and the
information loss at the analog—digital interface remains under-explored due to high DRes assumptions.
For current ADCs, capturing HDR signals at high-DRes (HDRes) is fundamentally impossible; a key
limitation for practical SRes. This motivates a wider perspective: super-resolution must simultaneously
resolve both amplitude and temporal structure—an ability that conventional systems inherently lack.

Increasing bit depth is unsustainable, as ADC power consumption grows exponentially with the
number of bits, but only linearly with the sampling rate [17]. As a result, oversampling emerges
as a more power-efficient alternative. This trade-off becomes especially critical in high-dimensional
imaging, where the data volume per pixel/voxel is large, making high bit-budgets impractical due to
power and storage constraints, e.g.data tensors in Time-of-Flight (ToF) imaging [18]-[20].

I-B: The USF Breakthrough. The Unlimited Sensing Framework (USF) introduced in [21]-[23]
breaks the fundamental trade-off between dynamic range (DR) and digital resolution (DRes) in

conventional ADCs by demonstrating that, for a fixed bit-budget, one can simultaneously achieve
HDR signal capture with HDRes. USF is built on the mathematical insight that, for smooth signals
[22], [24]-[26], the integer part can be recovered from the fractional part. In engineering terms, the
integer part corresponds to the conventionally quantized signal, while the fractional part represents the
quantization noise, which USF treats as an informative signal representation rather than a distortion
artifact.

The strength of USF arises from hardware—algorithm co-design. With folding parameter, A > 0,
the hardware employs an analog-domain modulo non-linearity [23], defined as:

g (|53 -3) w=9-1a, ®

where |g] = sup{k € Z | k < g} denotes the integer part of g. Since |.#)(g)| < A, sampling
and quantizing .#)(g) avoids clipping and yields “digital super-resolution” or HDRes (see Fig. 1).
Combined with advanced recovery algorithms, this enables new capabilities. Hardware validation of
USF has verified a 60-fold DR extension in practice [27], along with at least 10 dB enhancement in
DRes for modulo tomography [25], [26] and radars [28]. Such improvements are critical for advanced
modulation formats like 1024-QAM [29], full-duplex communication [30] and SRes spectral estimation
[31], [32].

I-C: Challenges and Related Work. Achieving off-the-grid recovery or super-resolution (SRes) from
folded samples gives rise to a new class of inverse problems, which we refer to as US-SRes. This
topic is still in its nascent stages.
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Fig. 2: Performance evaluation across varying dynamic ranges (DR) and quantization bits.
The measurements follow the model g[n] = T[1]y(nT — 7[1]) + T[2]¥(nT — 7[2]) (see (2)),
involving a weak-strong mixture with an amplitude ratio of |T'[1] /T'[2]| = 10. The detailed
experimental setup is described in Section V-A. We compare the recovery mean-squared error
(MSE) between a conventional ADC and USF across quantization levels ([3,15]) and input
DR values (||g]/L.. = {10,20,30})). In all scenarios, USF consistently achieves a performance
gain of at least 30 dB and demonstrates robustness to input DR variations.

The first attempt at formulating and addressing US-SRes appeared in [33], which provided
theoretical recovery guarantees for periodic-bandlimited kernels (¢ in (2)) under idealized conditions.
A subsequent approach in [34] leveraged Fourier-domain recovery using the same class of kernels to
directly estimate spike locations sk (t). This method offered both sampling guarantees and a proof-
of-concept hardware validation, demonstrating approximately 9.5\ HDR recovery. However, it is
susceptible to spectral leakage and cannot handle the broader class of smooth, non-bandlimited kernels
that commonly arise in practical applications and form the focus of this work (see Fig. 5 and Fig. 10).

In [35], the authors tackle US-SRes by relying on prior knowledge of the input to satisfy Itoh’s
criterion [36]. One key advantage of the USF is that it decouples sampling rate from dynamic range
(DR) and relaxes Itoh’s restriction, which imposes strict DR constraints (see Fig. 2, [19]). This leads
to limited HDR performance in [35], as evidenced by hardware results achieving only 2.8\ recovery
(see Fig. 9, [35]).

Until now, recovery guarantees in all prior works were tied to the sampling rate. In [37], the
authors demonstrated that sparse signals could be recovered independently of the sampling rate using
a dual-channel architecture; however, similar to [33], this approach assumes an idealized setting. A
one-bit quantization scheme with time-varying thresholds for sparse recovery SRes was proposed
in [38], based on periodic-bandlimited kernels and idealized folding conditions. While conceptually
interesting, this approach relies on highly specialized hardware and ADC architectures, resulting in a
niche problem setup that falls outside the scope of SRes and US-SRes, as considered in prior works
[33]-[35], [37].

I-D: Motivation. Prior works have not recognized or leveraged US-SRes to enhance temporal
resolution via digital super-resolution or increase measurement precision, essential for achieving
simultaneous amplitude and temporal super-resolution. This capability is crucial under low-resolution
sampling. Two key limitations arise: theoretical models for practical, non-bandlimited kernels (¢ in
(2)) are lacking, and robust algorithms for sparse recovery under coarse quantization are insufficient.
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I-E: Contributions. This paper addresses the aforementioned limitations and advances the state-
of-the-art in off-the-grid super-resolution [15]. Advocating that USF unlocks Super-Resolution in
both amplitude and time, the core contribution lies in the algorithmic realization and hardware-level
validation of US-SRes, even under stringent quantization constraints—as low as 3 bits (see Fig. 2). To
achieve this, we develop a cohesive framework that integrates theoretical guarantees, robust algorithm
design, and practical hardware experimentation.

(d Theory. In view of broader classes of functions, we consider US-SRes with non-bandlimited
kernels that can not be handled with previous theory. Building on this, we establish theoretical
guarantees for sparse signal recovery from modulo-folded samples (see Theorem 2).

(1 Algorithm. We develop an empirically robust algorithm designed to tolerate measurement
distortions and hardware non-idealities. Our non-convex optimization framework accurately
estimates sparse spikes, enabling HDR signal recovery (30 in Fig. 2) while mitigating challenges
such as spectral leakage, offering clear benefits over previous art [34], see Fig. 5.

(1 Experimental Validation and Benchmarking. To bridge the gap between theory and practice,
we implement our framework in a time-of-flight (ToF) imaging setup [18]—[20]. The method is
benchmarked under varying conditions using hardware-acquired ToF data, digitized via modulo
ADCs [23]. These experiments—with centimeter-level inter-object separations—demonstrate the
robustness and SRes capability of our approach, achieving up to 23\ HDR recovery (see Fig. 10).

Notation. The set of integer, real, and complex-valued numbers are denoted by Z,R and C,
respectively. The set of N contiguous integers is denoted by Iy = {0,--- ,N — 1}, N € Z*.
Continuous functions are written as g (¢),¢ € R; their discrete counterparts are represented by

glnl = gt)|,—,r» n € Z where T > 0 takes the role of sampling period. Vectors and matrices
are written in bold lowercase and uppercase fonts, such as g = [g[0],---,g[N — 1]]T € RY
and G = [gy, m]?&%’ € R¥XM_ The L,(R) space equipped with the p-norm or -l ) is

the standard Lebesgue space. For instance, L; and Ly denote the space of absolute and square-
integrable functions, respectively. Spaces associated with sequences are denoted by /,. The max-
norm (Lo,) of a function is defined as, ||g|[L.. = inf{co = 0 : |g(t)] < co}; for sequences, we

use, ||lg|l¢.. = maxy, |g[n]|. The Ly-norm of a function is defined as, ||g||L, = 1/ [|g (¢ )|? dt while
for sequences we have, ||g]| g2 = ZN Vg [n]/®. The inner-product of two functions f,g € L
is defined as, (f,g) = [ f(t)g(t)dt while for sequences, we have, (f,g) = 2711\/;01 [n]g[n]. The

vector space of polynomlals Wlth complex coefficients and degrees less than or equal to K is denoted
by Pk, for instance, Q(z) = E?:o hiz* € Py. The L-order derivative of a function is denoted
by 8§L) g (t). The space of L-times differentiable, real-valued functions is denoted by C'* (R). For
sequences, the first-order finite difference is denoted by (Ag) [n] = g[n+ 1] — g [n]. For any function

g € Ly, its Fourier Transform is defined by g(w) = [ ¢ (t)e Wt dt, For sequences, the Discrete Fourier
Transform (DFT) of a sequence g € /; is denoted b}éﬂg[ m] = Zn 0 g[ ]efj%m. Let W denote
the N x M Vandermonde matrix W% = [ ]"V'm}zleﬂ M = e¢’°~". The short hand notation for

diagonal matrices is given by Zx (h) with [Pk (h)]kk = [h],c, - We use (fog)(t) = f(g(t))
to denote function composition. The mean-squared error (MSE) between x,y € R is given by

E(x.y) = & Lnco |z [n] =y ]l
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II. EXACT SPARSE SPIKE RECOVERY

II-A: Problem Formulation. Let g () > A be a HDR sparse signal in (2). Let y (t) = .#\(g (t)) be
the folded version of g (¢) as in (3), then uniform sampling of the LDR, continuous-time signal y ()
results in,

ynl =y ®)|—pr = A\(g(nT)), nely “4)

where 7' > 0 is the sampling step. Given {y [n]}ne1, and {¢ [n]}ner,, our goal is to recover sx (t). In
this section, we conduct the theoretical analysis in noiseless case while taking noise and quantization
into consideration in Section IIL.

I1-B: Tools from Approximation Theory. Since .#)(-) transforms a smooth function into a piecewise
smooth one [22], our recovery approach hinges on non-linear filtering of smooth and non-smooth
components. Consequently, analyzing the smoothness of the underlying functions becomes central
to our method. In this regard, norm-interpolation inequalities play a key role. In particular, our
development relies on the Kolmogorov—Landau inequality [39], a focal point of mathematical analysis
from the 1950s—80s. The central idea is that, given certain L,—norms of an operator (e.g. derivatives),
intermediate norms can be estimated via interpolation. The following theorem provides a quantitative
formulation.

Theorem 1 (Kolmogorov [39]). Let 1) be an L—times differentiable function
defined on the set T C R, with bounded derivatives. Then, for |l =1,... , L—1,
the function 1 satisfies

10y < e (I ) (105700 ) )

Kolmogorov’s pioneering work established the sharp constants {%, L}L ! for T = R through
construction of extremal functions that attain (5). In particular,

K-
Cgl,L = W7 g{L = ||8m,L||LO<, (6)

L
where &, 1, L > 0, is the perfect Euler spline of order-L,

sin((2p + 1)mt — wL/2)
Em.r (t mLZ (2p + 1)L+ , m=1
4K [ (=PI
and K, = - 2_% <2p n 1) (Bohr-Favard constant). @)

II-C: Main Result: Sampling Theorem and Recovery Algorithm. We propose a time-domain
approach that uses digital SRes along with amplitudes to achieve temporal SRes. This enhances
temporal SRes capabilities while reducing sampling costs, a critical advantage lacking in conventional
SRes methods that assume infinite-resolution measurements. The smoothness of the kernel 1) enables
amplitude shrinkage in the high-order difference domain, allowing for the separation of the integer
part g — .#\(g) via non-linear filtering. Spectral fitting then retrieves sx (t) perfectly.

Mathematical Model and Properties of the Kernel. In developing an off-the-grid USF method, an
effective starting point entails abstracting properties of 1 shared across various data modalities. Our
observation, based on various experimentally calibrated kernels used in practice, suggests that these
kernels exhibit common mathematical properties [20]:
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1) Time-concentration: (t) = 0, t ¢ 9 C R where J is finite, contiguous time interval.
2) Smoothness: 1) € C* (R) is L-times differentiable.

Consequently, we model the kernel as a function that belongs to a shift-invariant space (SIS) [40]
or ¢ € V,, where, Vﬁ'f =span{¢ (t/y —1)},c, and where ¢ is the generator of the SIS. Any v € Vi’

can be represented as,
Z bl ( ) . v>0

lez
where ~ regulates the density of the grid. This representation generalizes the Shannon-Nyquist
representation for bandlimited spaces or V?Yinc, extending to compactly supported generators and non-

®)

bandlimited function spaces. The representation in (8) is stable and unique, whenever the translates
{¢(t — k) }rez constitute an L,-stable Riesz basis' [41]. That is to say, Vp € [1, o], there exist lower
and upper bounds, 0 < Ay < By < oo such that,

Ay = inf Zb (t—1) >0 and
lblle, =1 || 17 .

By = sup Z bll] ot —1) < 0.
Blle, =1 || 7c7 L

In our work, we choose B-splines [41] as the SIS generator,

() (-n 55,

denotes the one-sided power function. Our choice is motivated

L+1

Bt LIZ

where L is the spline order and (t)i

(1)

by the fact that splines satisfy all of the above properties— smoothness, time-concentration (compact
support) and stable Riesz basis [42].

Let VAL/ = span{BL (t/7 — )},cz- In the next result, we show that ¢ € V% allows for analytical
approximation of the kernel 1, setting the foundation for our recovery approach.

(Lemma 1. Let ¢ € VI Lo (R) with (t) = 0, t & 9 C [0,7) with Ky, in (7). Then, ¥
satisfies the approximation property,
- 2

1 .
min / Y (t) — Z a; ¥ dt < pr where

o (T 2L 22 |lplE
{ai} T i<l 2~ -
0 il<

(2L — 1)I2L-1
(12)|

\

Proof. From the compact support property, we have,
j217rt —~ 1 ,2imt
sze T i:FW}(t)ve T >[0,7—}'
€L
Integratlon by parts gives ¢z = m_l fo d(e_]NTit), where k; = 2m¢. Further simplification yields
(e T — k7 T e ’d(w( £). Slnce ¢ € VEand ¢(t) = 0, t ¢ 9 C [0,7), we deduce

I'The Riesz basis property ensures that the L,-norm of a function is equivalent to the £,-norm of its expansion
coefficients in the SIS. In our case, when working with square-integrable functions, the existence of Riesz
bounds guarantees that the basis functions belong to L, and are linearly independent in the /5 sense. Whenever
the basis is orthornormal, we have Ay = B4 = 1 and the Parseval’s relation holds.
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P(t)e

@i_,.@i—l/o oM y(t) e dt, ki = 2mi. 13)

By repeatedly performing integration by parts, we obtain,

2imt
fJ@ﬁ”ww e dt N

From the above relation, we establish a connection between the Fourier frequency index ¢ and the

¥

smoothness parameter L which serves as a proxy for the effective bandwidth. Specifically, |JZ| x
CLit where CF = |10 y||L...

For entire functions of exponential type, including ¢ € Viinc, |\6§L)¢HLP can be upper bounded
in L,-sense by using the Bernstein’s inequality [43] or H@,:(L)z/;HLP < (n/y)F |[1)[|L,. However, in
our case, ¥ € Vf? N L (R); we consider non-bandlimited, spline-spaces. Nonetheless, as shown in
[24], using a constant-factor correction to the BernStein’s inequality, it is possible to upper bound

10| using,
L
o) <<w> Il ae <( ) [l s
H t wHLoc /_y <7{L 2'Y| | g{L ( )
2I+1)

~

1/}.

LetH (t;a) = 32 <; a;e/2/7 be a trigonometric polynomial parametrized by a € C(
{ai = ¢z}|z|<[ yields,

. Choosing

P(t)—H (t§ {Ji}\iKI) Z e/,

[i]>1
Let (1, Hya) = Lo (t) — H(t;a) ¥ (t) HEZ(R([O 7)) denote the mean-squared error, then by using
(15), we obtain, &(1), H; {QZi}MQ) < (l)QL% as derived below,

2v/  (L—1)IPL-1>
~ ~12
8(¢7H3{¢i}\i|<1) = Z (o
li|>1
2L 2
T 7.
“(3) T

[i|>1

(2 (L Yae (2) 2 g
2y ®x2 ), \r 2y (2L — 1)12L-1°
By definition, min, (¢, H;a) < E(, H; {wz}‘ i<1)» we then derive the desired result in (12). O

From Lemma 1, we deduce that for large bandwidths, i.e., Q0 = I,,2" with I, € Z*, where 1,2~
is the largest approximated frequency in (12), ¢/ can be approximated via (12).

Recovery Guarantees. We formalize the theoretical gurantee for spike recovery in the following
theorem.

2The results in [24] are derived from the extremal properties of polynomials, as in:
I". T. Marapun-Mnesie, “O nannydniem npuOIMKEeHHH CIIAlHAMU KI1accoB GyHKLMM Ha npsmoi,” in Hccrnedo-
sanus o meopuu ougdepenyupyemvix QyHKYUL MHO2UX nepemennblx u ee npunodxcenusm. 4acmo 14. Proc. of
the Steklov Institute of Math., 1992, vol. 194, no. Tp. MUAH CCCP, pp. 153—-164.
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Theorem 2. Let g (t) = S.p o' T'[k] v (t — 7 [k]) where ¢ € VE N Ly (R) is
a known kernel with compact support 9 and assume (maxy |7 [k]|) + [9] < 7.
Given y[n] = M\(g(nT)),n € Iy, T = 7/N, the folded samples of g, then
the sparse signal sy in (1) can be exactly recovered provided,

: T o KA
T < min g =
L+ 2K m \| Ky pllsklltvivl.,

where
he{l,---,L} and ¢ > 1
Proof. Let AMg[n] = A=Dg[n + 1]— A=Y g [n] define the h-th order finite difference. Similarly,
define the shift-difference operator as Sp () = () (¢t +T) — (-) (¢). Then,
h h h—
AWg) = 83" (9) ()] . 8 =Srosy Y a7

(1)

where &}/ = S7. By definition, AWM g [n] is upper bounded,

1
1AW gle. < lI7 () < TNO gl
Moreover, for h = 2, we obtain,

2 2
182 (@)l < TN0M ST (9. < T8 g0

e
Consequently, by induction, for arbitrary h € [1, L] we have
h h
1A®glle. <1185 @Il < T"19; gl as)

Next, we bound A™g from above by analyzing H(‘)t(h)gHLm. From (2) and Young’s convolution
inequality, we deduce that,

10 gl < sl e, hell, L] (19)

where ||si||tv = [ |sk (¢) |dt denotes the TV-norm®. Through (19), we have transferred the problem
of upper bounding H(‘)t(h)gHLm to ||(9t(h)1pH|_oo. Since ¢ € V% N L (R), then, from the Kolmogorov-
Landau Inequality in Theorem 1, we have,

10, < e (el ) (1o wItt) 20)

By plugging (15) into (20), we upper bound 8,5( ) P:

(h) K ()" (19) () K n (7\"
10, |, < 5 ¥l = 11679l < —— 5 [sxllrvll¥l.. @D

g{L g{L
With (18) and (21), ||A(h)g||goo is thus upper bounded by,
Ki_n (7T\"
AR < oLk (22 : 22
[AYg]le., g \ s llrvivlli. (22)

3Denotes the continuous version of /;-norm for absolutely continuous functions and in the case of Dirac
measures, sk (t) = 2:01 I'[k] 6 (t — 7 [K]), we have ||sk|ltv = >, |[k]| (also see [12]).
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By regulating 7" in (22), we can shrink the RHS arbitrarily. In particular, choosing,

Kr—nA
7<(3) \/ oo = (1A%l < (23)

Kellskllrvivli.

Signal Recovery via Non-linear Filtering. The result in (23) enables us to link A(X)g with AF)y;
from the modular decomposition property [22], [44], we have

g=AM\(g9)+¢eg, €4(t) = Z Cmt (t = Tim) (24)

where u () is the unit step function and, the unknowns c,, € 20\Z and ,,, € TZ" N[0, 7) parametrize
the folds induced by .#)\(-), and where M is the number of folds. From the modular arithmetic,
AN ar) = AN A (ar)), |AMg|l,. < A deduced in (23) and AF)e, € 2)Z, we have (also
see [22]):

MNAPy) = (AT (g —g4)) = ATP)g. (25)

Sparse Recovery via Spectral Fitting. Having recovered A(X)g via (25), we next address spike
retrieval in the difference domain. Let zZ [[] denote the Discrete Fourier Transform (DFT) of ¢ [n].
By choosglg a; = ;{ﬁi}\i\é 1, the analytical representation of 1 in (12) establishes a linear mapping
between ) [I] and ;:

2(7, l ~

12N 4, Z e’ — N4y (26)
[i| <1y n=0
Similarly, it follows that for g,
) N-1K-1 —72lnmw ~ K1 —2lmT[k]
=YD TG MT —7k)e” N =4[] Y Tk = , 1€l Q7
n=0 k=0 k=0

Next, we show that the linear mapping still holds in the high-order finite difference domain. Starting
with ANg [n] = g[n + 1] — g[n], from (17) and (12), we can write,

2inT 251t
AWgn)= Y Gl —e 7 ) WU (28)

i< 1y

which follows the assumption that 7 = NT and (23). Hence, performing the DFT on A(g [n] and
AWM [n], the linear mapping in (27) still applies. By induction, we can derive that the same conclusion
still holds as long as 7 > LT'. Re-organizing (27) leads to a sum-of-sinusoids (SoS) model,

’g\l K-1 —2l7r7'[k]
ol Z T [k , 1€Ty,41\{0} (29)
=0
where the recovery of {I'[k],T[k]};—, can be solved using Pronys method [45]: Let f ]
be the annihilation filter with z-transform f(z) = 2K f[llz7" = TR '(1 — ugz"") where

up = e 27Kl/7 | ¢ T, The roots of f(z) uniquely determine the spike instants {7 [k]}ger, .
Then, it suffices to show that f annihilates the SoS sequence s:
—1 72(1711)7”[16} K-1 Anrlk]

(f*3) Zfll T [k T T f(ug) = 0.

1,=0 =0 k=0

I
—
=
®
d
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In vector-matrix form, the above is written as

S SIK] e S0 ][0
S[K:—FQ] S[K:-i—l] 3[2] f:[l] o 30)
slly] sy =1] --- 5y - K| Lf[K]
—_———
6 f

where G(5) is a Toeplitz matrix constructed by {s[l/]}. Hence, the annihilation filter coefficients f
can be obtained by solving the linear system of equations, provided that the number of samples is
no smaller than that of unknowns, i.e., I, > 2K. Given 7 = NT, this implies that (7/T) — L >
Iy > 2(K,¢ > 1 ((1/T) — L is the sample size of {A(F)g[n]}). Combining with (23), we derive
the sampling condition on 7. Then, sx defined via the unknowns {I" [k], 7 [k]}ker, can be computed
by evaluating the zeros of f(z) and solving least-squares problem. Note that, to make (29) hold, the
time-duration 7 should satisfy that, g(¢) = 0, ¢ ¢ [0,7) = maxy |7 [k]| + |9| < 7, so as to avoid
truncation®. O

Remarks. The implications of Theorem 2 are twofold.
1) The FP-SR (Fourier—Prony SRes) approach [34] relies on Fourier-domain partitioning, and its
gllr.. = 9.46X [34]). By
contrast, the our method is inherently agnostic to spectral leakage and achieves a considerable
DR extension (||g||z.. = 30\ in Fig. 2 and ||g||z., = 23.51\ in Fig. 10).
2) The parameters N and T govern sample redundancy, indicating that oversampling directly

digital SRes performance is constrained by spectral leakage (e.g.,

improves the accuracy of the measurement model.

III. RoBUST OFF-THE-GRID US-SRES

We have shown a theoretically guaranteed spike recovery approach in Theorem 2, offering
concurrent SRes in both temporal and range dimensions. Nonetheless, the fragility of the key
assumption of ideal folding, i.e., ¢, € 2A\Z, together with challenges in real-world scenarios may
compromise the HDR and SRes capability of this method. Specifically, challenges we have identified
from hardware experiments include,

Measurement distortion. Inherent in electronic circuits, data distortion and noise arise
from (i) analog-domain folding and (ii) sampling process, leading to a mixture of non-ideal
folding ¢, ¢ 2\Z, quantization noise (bounded, uniformly distributed) and thermal noise
(unbounded, Gaussian distributed) [23], [31]. The measurement distortion can destabilize the
non-linear filtering operation (25).

Numerical Stability. As the high-order finite difference operation promotes high-pass
frequency components, the signal-to-noise ratio degrades as h increases. This imposes the
resolution limits of inter-spike separation, particularly under the low-resolution sampling
setup.

This necessitates the design of a robust and flexible SRes method which is resilient to measurement
noise and folding non-idealities. To this end, we introduce SRes-IterSiS (viz.SRes iterative signal
sieving method) in the following section.

“From a practical viewpoint, violation of this condition implies that the waveform of g is not fully covered
in the observation window [0, 7), which may compromise the accuracy of off-the-grid signal recovery.
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III-A: Towards Robust SRes Spike Estimation. Here, we capitalize on the dual-sparsity features
of the folded measurements. Plugging (2) and (24) into (17), we can write,

K-1 M—-1
APy [n] = AW S T k] (0T = 7 [k]) = AP S~ cpu (nT = 7) (31)
k=0 m=0

where specifically, we concentrate on h = 1 since in practice, h > 1 would inherently (i) amplify the
noise level, (ii) increase the folding count and (iii) reduce the signal power, degrading the resolution
of spike estimation.

To simplify the notations, we use g [n] = g[n + 1] — g[n] to denote the finite difference. Hence,

(31) simplifies to,
K-1

M-1
y[n) = r[kw(n—z{k]) — 3" b n— ) (32)
m=0

k=0
where n,, = 7,,/T € Iy. (32) follows an additive SRes formulation where the spike recovery entails
separation of two sparse, additive terms:

1) bandlimited projection of spikes g,
2) sparse spike sequence g,.

The model in (32) shows the “low-pass + spikes™ characteristics of the measurements y, allowing for
separating different components apart via time-domain sieving strategy. Hence, in view of (32), the
off-the-grid USF problem in real-world scenarios can be posed as:

M-1
. 2 _
o ly —g+egllf,, stlel, = n;) Cmd [ — Ny

K-1
@HZZF[H?&(n—T%}{]), Cm € 2NZ, (33)
k=0

where {I', 7} and {c,n} are the vector form of {I', 7} and {c,,, n,,}, respectively. Despite the non-
trivial setup of the additive SRes problem (33), the difference between signal subspaces spanned by
¥ (t) and w () inspires us to separate the distinct signal components via sieving strategy. Namely,
(33) can be split into two tractable sub-problems: P1 tackles the recovery g, (residue) via sparse
approximation on the continuum and P2 solves the high-resolution spike estimation of sy via sparse
deconvolution.

III-B: Sub-Problem P1: Residue Recovery. Assume that {I', 7} is known, (33) amounts to,

M-1
min €, —glf st g,=g-y, [g] =D cmbln—nm], cm € 2\Z. (34)
m=0

To find the accurate solution to (34), we leverage the continuous-time parametrization of spikes in
[44]:
P(EX_1) Pe Py 2mn

— =i n — IN-1
Qg[n] - Q(§%71)7 Q c PM ) §N—1 e (35)

where the roots of the denominator Q are given by,

Q(um) =0 <= uy, = 6]217\;%’1”, m € L. (36)
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In the presence of data distortion, the model on the continuum (35) allows for refinements on residue
recovery within the alternating minimization scheme. Hence, (34) translates to,

&,MQER—) — PR [*

37
Qe 1) G7

min
P,.Q

neln_1

Algorithmic Implementation. Solving (37) is still challenging due to its rational polynomial structure
[46]. To address this issue, we utilize an iterative minimization strategy by assuming QV—1 ~ Q,
where (37) thereby reduces to,

2

gg[n]Q(&T\Lf—l) —P(&y_1)
QU1 (€x_1)

It can be seen that, (38) is linear about P and hence, can be considered to be minimized on Q alone.

(38)

To find Q, we initialize Q[ and acquire a collection of estimates for Q by iteratively minimizing
(38). Among the estimates, we choose the one that minimizes the mean-squared error in (38) on Eg.
Moreover, different initialization seeds for Q[O] allow for diverse estimates and thus stabilize the spike

estimation.

Once Q is retrieved, P can be obtained via least-squares and the residue parameters can be computed
by evaluating the residue (in complex analysis sense) of P (z) /Q (z) as,

in =1 —<va—})>;L;%P<um> o

) 0.Q()] 36) 2z

IN=1)Im(log um) » Um = € N7 (39)
Nm = 2

Next, we provide an algorithmic implementation for solving (38): the polynomials
{P(&R_1), QR _1) tnery_, in (38) can be written in matrix form as,

[PER-1)] =WN_ip and [Q(€x-1)] = Wi a
where {p,q} are the coefficients of {P € Py;_1,Q € Py}. With the estimate g/ known, the
minimization at j + l-iteration can be characterized algebraically as,
. , . 2
{p[yﬂ]’ q[3+1]} = arg min Hg[ﬂq _ V[J]pH (40)
{p,a} 2

where {GU!, VUI} are respectively given by,
. . . . . . -1
Gl — QK(Eg)R[J]W%Ijll, vil = RrUIWY | RU = (@K (W%irllqb])) . @

Moreover, note that, the set of minimizers is closed under scalar multiplication, meaning that ¥V~ # 0,
~vq is the minimizer to (38) if q minimizes (38). To ensure the uniqueness of the estimates to Q, we
use a linear normalization constraint given by (q%, qU*!) = 1 where q!?! is the initialization seed for
the iterative minimization algorithm. Consequently, the linearly constrained quadratic minimization
(38) can be formulated as,

[+1] .
p — - (4]
A = argmin ||[AYz
{q[ﬁ-l} } {p,q} H

2 " . . . [0]
st bz=1, Al = [G[J] —Vbl} 7= H b= lq ] (42
P 0

(42) is convex and can be solved efficiently with closed-form, explicit solution. Eventually, to ensure
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Algorithm 1 Robust Off-the-Grid USF Recovery via SRes-IterSiS Algorithm.

Input: y, K and M.

I: Initialize &) + y. 17:  Compute 3 by solving (45). -
2: for i =1 10 ipay do 18:  Estimate s [0] using matrix pencil for {5 [I]},”;.
3 Initialize MSE < oc. ~
4:  for loop = 1tomax. initializations do 19: Update s [0[}] via (47).
5: Initialize q as ql°). 20:  Update {T'" , 7} by solving (45) with matrix
6: for j =1 to jpax do pencil.
7: Construct t[h]e rrEa_l]trices in (41). 21:  Recover g[i] with {f[i] 7~_[i]} via (2).
8: Update {ql), plil} by solving (42). co il [i—1] ’
i 22: f — < o holds th
9: Reconstruct g_g] via (35) and (43). ! ||§ g~ ~||Zj°~ o ho S{ ef‘ <l _pi
10: Compute: ) 23: Update {p,q,I', 7} < {Pmaq[z]’l_‘ TOh
MSED = |11 — e[, /(N —1). .
L L2 24: Terminate all loops.
11: if MSEU) < MSE holds then 25 end if
12: Update {p'", g1}  {p!", gV}, 26:  Update &) as gl « g7 —y.
13: end if 27: end for -
14: end for 28: Reconstruct 5 () via (1).
15:  end for =

) Lo Output: {p,q,I',7} and 5 (¢).
16 Compute &) with {pl, q"} via (35) and 43). OVtPuE (P& T T and (1)

g

the on-grid constraint c,,, € 2A\Z, we apply the quantization operator on the estimate

g,[n] = 2, (;g%j) . 20 () =2\ {('); AJ . (43)

III-C: Sub-Problem P2: Spike Estimation. With g, estimated from P1, (33) amounts to,

K-1
| ~ N Tk
wn B gt st E=g vy B, =X TWu(n-Tp) @
) k=0

which is a typical SRes problem that has been widely studied in different communities [2], [4], [6],
[12], [18], [20], [47]-[49]. Despite the state-of-the-art SRes techniques, e.g./1-norm minimization
[48] and non-convex optimization [50], in this paper, we relax and convert (44) into spectral fitting
problem. Our solution strategy offers two key advantages:

1) Data Volume. In the context of high-dimensional imaging, the measurements are usually sampled
with fine temporal resolution, yielding large data volume. This causes stability and scalability
issues for the mainstream optimization-based techniques [48], [50], [S51].

2) Digital Resolution. Leveraging digital SRes via USF, the sieving method provides a relatively
accurate signal estimate for g, thereby reducing the computational burden of SRes spike
estimation. In this context, even a simple signal deconvolution method achieves accurate spike
estimation, as validated through extensive numerical and hardware experiments (see Section V
and Section VI) 3.

SWhile incorporating advanced SRes techniques [6], [20], [47] specifically tailored for off-the-grid USF
imaging could further enhance performance in terms of resolution and speed, such efforts fall beyond the scope
of this work and are left for future research.
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Using the analytical representation (27), we relax (44) as,

(Relaxed ) min >~ [51]- Y Tkl 7 |, where 5[l]=%~, g=A"(g,+y)
Ty k€l ]
(45)
where A~!(-) denotes the anti-difference operator. The relaxed sub-problem (45) can be solved
efficiently using high-resolution spectral estimation approaches [52]-[56].

Algorithmic Implementatlon From (45) g can be recovered up to an unknown constant, resulting
in the indeterminacy of ¢ [0] as well as 5[0]. To address this issue, we abstract the problem as follows:
let s [l] = 5[l]+cod [I], where 5[I] = >, o T'[K] e~ 2mTK/7 | ¢ [~ K, K] and ¢y € R is an unknown
constant. Then, from (30), we know that,

G(3) = G(3) + cly = GG)f = cof (46)
which indicates that cg is the eigenvalue of G(§) Moreover, the structure of sy (¢) and Toeplitz

matrix results in,
H

(k] # 7 [k Vk # K rank (G(3)) = K

which suggests an algebraic solution for estimating cy:

T[k] € R,k € I { G(3) = (G(3)

/S;[O] ~3[0] = lco| = ming ||G(§)f||%2
a subject to ||f[s, =1

(47)
With I, > K, we can obtain an initial estimate to 5 [0] by first performing spectral fitting on {? [l]}llz/1
and then estimate $[0] with the retrieved spectral parameters {I' [k] , 7 [k]}xe1, . This empirically results
in a small value of |¢g| and hence (47) holds. Since ¢y € R, we can determine its sign by evaluating
the eigendecomposition of G(N) (46). Having {s [1]}j11<1, known, we solve (45) using the matrix
pencil method [53]° and reconstruct g via (2) and apply the finite difference operator. We summarize
the procedure of SRes-IterSiS in Algorithm 17.

I'V. US-SRES FOR TOF IMAGING

To demonstrate practical impact, we apply our approach to ToF imaging (see Chap. 5, [1] for
overview), where each pixel captures a scene-dependent time profile with temporal resolution on the
order of nanoseconds to picoseconds [18], [57]-[59]. We use r = [z y]T to denote a point in the
Cartesian coordinate where (-)' is the transpose operation. Acting as active imaging systems, ToF
sensors probe the 3D scene of interest with some time-concentrated kernel [20], represented by p (¢)
at a point r.

The spatio-temporal scene response function (SRF) s, (¢) characterizes the 3D scene. In the general
multi-reflection scenarios (see Fig. 6-Fig. 10), the SRF is given by,

K-1
sy (t) = Ty [k] 0 (t — 7 [K]) (48)
k=0

5QOther state-of-the-art high-resolution spectral estimation techniques such as atomic-norm methods [54], [55]
are also applicable in our context.

7 is choose based on the measurement noise level. In the context of low-resolution sampling, o oc 2\/25
where B is the quantization bit budget.



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. XX, NO. X, OCT 2025 19

USF Sampling
p, =[G = xs) ~>~>gr =(rex0) () 25 g () = Mi(ge (1) Z% 0] = g (B)],_
~—~ _,_/ —_———
Emitted Signal =~ Reflected Signal Measured Signal Folded LDR Signal Measured Samples

SRF

Fig. 3: Block diagram for modulo ToF image formation process. The goal is to estimate s, (t) from {y, [n]}nery -

where {I'; [k], 7y [k]}ke1, are the corresponding reflectivities and time-delays (7 [k] = 2d, [k] /¢, ¢
is the light speed) induced by K light paths at point r. As a result, the reflected signal is given by
rr (t) = (p * sy) (t), describing the interaction between the emitted signal p with the 3D scene sy.
The reflected signal is captured at the ToF sensor through its electro-optical architecture, which
is characterized by its instrument response function (IRF), denoted by ¢ (¢). Consequently, the
continuous-time measurements read, gy (t) = (ry * ¢) (t), which can be further simplified as

e (1) = (sex ) (1) and o(t) & (px ) (1) (49)

where ) represents the kernel characterized in (12). Plugging (48) into (49), g, can be re-expressed

as,
K-1

1) E S T KW (¢ - 7 [K]) (50)
k=0
In the context of multiple reflections, the mixture of far and close targets results in weak-strong
characteristics, as shown in Fig. 1 and Fig. 9. This requires concurrent HDR and digital SRes
capabilities of the imaging pipeline, which is impractical with conventional approaches in practice,
since:

1) Hardware Cost. The circuitry complexity increases largely with the quantization budget.

2)Power Consumption. The power consumption of the ADC scales exponentially with the
quantization budget [17].

3)Data Volume. Since ToF sensors capture data at high temporal resolution, the data volume will
explode with higher quantization resolution.

Conventional DR—DRes trade-off limit practical SRes in ToF imaging. We show that USF overcomes
this, enabling temporally super-resolved ToF recovery from low-resolution data with consistent > 30
dB gains over traditional methods. A global view of the USF-ToF image formation is shown in Fig. 3.
For continuous-wave ToF imaging within the USF, we refer the reader to [60].

V. NUMERICAL EXPERIMENTS

HDRes is essential for achieving temporal SRes from low-resolution measurements—an ability
lacking in conventional methods [12], [15], [47], [48]. All experiments in this study are based on ToF
hardware measurements. The distinction between numerical and hardware experiments lies in whether
the hardware-acquired data are re-digitized using the .#,—ADC or directly processed in their original
form. To showcase the performance gain of the USF, we present a series of numerical experiments,
including:

1) Clipping-free recovery: HDR recovery when the conventional ADC clips.

2) Low-resolution sampling: ToF Imaging using few quantization budget.

3) SRes Imaging: Close inter-object separation on semi-real ToF measurements.

4) High-order Imaging: Concurrent weak-strong targets detection on semi-real ToF measure-
ments.
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TABLE I: Numerical Experiments: Parameters and Performance Metrics.

Figure Bits K T M gl A tr PSNR
(ns) Q%) Q%) (ns) (dB)

Fig. 5 4 2 048 108 099 0.05 [30.38,42.07] 39.83
Fig. 6 (a) 3 2 077 12 0.98 0.10 [30.40, 42.14] 39.05
Fig. 6 (b) 3 2 077 12 1.00 0.10 [32.277 42.13] 39.81
Fig. 6 (¢) 3 2 077 12 0.99 0.10 [34.23,42.17] 40.24
Fig. 6 (d) 3 2 077 12 0.99 0.10 [36.73,42.54] 41.10
Fig. 9 3 3 077 44 0.99 0.10 [84.97,97.19,111.04] 40.68
— 3 3 077 38 1.00 0.10 [84.80,97.11,111.09] 36.34

Fig. 4: Experimental setup
for SRes ToF Imaging. The
T 3D scene comprises of a

. mannequin head positioned
i » .y . . . .

3 .. between a diffusive semi-
: >z

Mixture of (K-1) Semi-reflective Surface

Imaging ) . translucent surface and a wall
Sensor : . ) in the backdrop. The diffusive
sheet is moving closer to the

— mannequin head, leading to
: the challenges of separating

two close objects.

Scene of Interest

v

do

dr—1

Time Delay 7x [k] = 2d, k] /c

The experimental parameters including sampling step 7' and bit budget B, are tabulated in Table I.
The peak-signal-to-noise ratio (PSNR) and ||g||__ are utilized to evaluate reconstruction quality and
DR extension, respectively.

V-A: Performance Evaluation with Conventional Approaches.

V-Al: Clipping-free HDR Recovery. In the first experiment, we investigate the HDR imaging case
where ||g||L.. = 20\. The waveform ¢ arises from hardware experiments [19], [20] where the 3D
scene comprises of a mannequin head placed between a diffusive semi-translucent surface and a wall
in the backdrop, as shown in Fig. 4. The inter-object separation between the diffusive surface and
mannequin head is 1.6 m. The raw data comprising of 120 x 120 x 794 x 4 image tensor is obtained
from a lock-in ToF sensor, where N = 794 refers to the number of ToF measurements recorded with
sampling period 7' = 480.75 ps. We use a single-pixel data (r = [100 50] ") and acquire {y, [n]} via
3).

To highlight the benefits of paradigm shift from conventional acquisition to USF, we set the DR of
the conventional ADC to 2\, the same as .#,-ADC. This yields data clipping as shown in Fig. 5 (a).
To benchmark the performance of our approach, we compare the reconstructions obtained from: i)
conventional ADC measurements + SRes technique for solving (45) and ii) .#,—ADC measurements
+ the state-of-the-art FP-SR method [34].

As shown in Fig. 5 (b), the conventional ADC data suffers from clippling and results in failure of
SRF recovery. The FP-SR has difficulty in finding dense spikes, causing erratic time-delay estimation.
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(a) ToF Measurements: 2 Reflections with 4 Bits (108 Folds). Fig. 5: Clipping-free HDR re-
1k covery (||g||L., = 20A). On the
Ground-Truth acquisition front, the DR of the
3 — UsF conventional ADC is the same
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g' sulting data clipping causes in-
< » . i i . accurate time-delay estimation.
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Despite the HDR challenge, our approach offers accurate signal recovery with PSNR = 39.83 dB,
and the time-delay estimation is visually indistinguishable from the ground-truth. This result pinpoints
the advantages of the SRes-IterSiS approach at both acquisition and algorithmic recovery fronts.

V-A2: Low-Resolution ToF Imaging. Quantization bit budget is a key constraint in high-bandwidth
ToF sensing, where power consumption and data volume grow rapidly with bit resolution [17], [61].
Existing low-resolution approaches, such as one-bit sampling [19], rely on prior DR knowledge and
still suffer from clipping and saturation (see Fig. 5), limiting digital super-resolution for close—far
scene recovery (see Fig. 1). Our proposed method overcomes these limitations, enabling super-resolved
scene recovery from low-resolution measurements. We demonstrate this using weak—strong reflections:
gn] =Ty (nT —7[1]) + T [2]¢ (nT — 7[2]) with |T'[1] /T"[2]| = 10, |7 [1] — 7[2]| = 75, and
N = 501. Conventional ADC and .#,-ADC data are quantized with identical bit budgets (B =
3-15) while varying DR (||g||... = 10,20, 30)). Mean-squared error (MSE) is computed over 5000
randomized trials to produce the performance curves shown in Fig. 2.
The main conclusions from Fig. 2 are:
Consistent Performance Gain. Our method provides a precision improvement (at least
30 dB) across all DR extensions and quantization resolutions, even in low-resolution regimes
(B < 6).
Robustness to Input DR. Our method remains insensitive to input DR, offering stable
performance even with a 3x boost in the input DR.
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Fig. 6: SRes ToF imaging. The 3D scene consists of a mannequin head placed between a
diffusive translucent surface and a wall (backdrop), as shown in Fig. 4. By moving the diffusive
surface, the inter-object separation is uniformly reducing from (a) 1.6 m, (b) 1.3 m, (c¢) 1.0 m
to (d) 0.7 m, respectively. Using 3-bits quantization, our method achieves ||g||.., = 10\ and
super-resolves the inter-object separation with estimation error down to 0.9 cm.

V-B: Super-Resolved Imaging on Semi-Real ToF Data. In this experiment, we demonstrate that the
HDR and digital SRes of the USF method translate into temporal SRes in inter-object separation. We
use the same experimental setup as depicted in Section V-A and Fig. 4, and progressively reduce the
inter-object distance between the diffusive surface and mannequin head from 1.6 m, 1.3 m, 1.0 m to
0.7 m, respectively, with 0.3 m reduction in each experiment. This equivalently leads to equidistant
spike shifts as shown in Fig. 6. For this dataset, raw data comprising of 120 x 120 x 361 x 4 image
tensor is acquired from a lock-in ToF sensor, with 3-bits quantization and sampling period 7' = 0.77
ns. This gives rise to approximately the same power consumption as the configuration specified in
[18] where measurements are sampled with one-bit quantization and 96.15 ps.

For per-pixel measurements, we set ||gr||L. = 10, inducing a true HDR scenario. A ToF image
slice at £ = 68 ns and its folded version are shown in Fig. 7. We first evaluate single-pixel recovery
(r = [60;60] ", K = 2), where closely spaced objects make one spike nearly invisible due to kernel
overlap (Fig. 6 (c2), Fig. 6 (d2)). Despite this challenge, our method reconstructs the signal with
PSNR ~ 40 dB. Extending to the full scene (0.7 m separation), we recover accurate ToF profiles
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(a) ToF Image at 68 ns (b) Folded Image at 68 ns (c) Recovered PSNR
Amplitude (a.u.) Amplitude (a.u.) PSNR (dB)
0.28 0.64 1.00 -0.10 0.00 0.10 32 38 44

Fig. 7: SRes recovery of ToF measurements. (a) A slice of ToF tensor at ¢ = 68 ns. (b)
The folded version of (a). (c) Recovered PSNR of each pixel data. Despite the low-resolution
sampling settings, our method achieves accurate recovery across all pixels with PSNR > 33

dB.
(@) I [0] Iy [1] (c) I, [0] Iy [1]
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Fig. 8: Super-resolving object through a diffusive semi-translucent surface. (a) and (b) are
amplitude and depth imaging using 11-bits resolution; (c) and (d) are corresponding results
utilizing our US-SRes method. The experimental setup is shown in Fig. 4 with inter-object
separation of 0.7 m. A slice of ToF image tensor at ¢ = 68 ns and its folded version are
shown in Fig. 7. Using 3-bits quantization, our method super-resolves two close objects with
estimation error down to 0.29 cm.

across all pixels, producing a reconstruction visually indistinguishable from the 11-bit ground truth
(Fig. 8). The inter-object separation errors are {1.26,8.91,9.25,2.90} x 103 m, equivalent to resolving
{4.19,29.69,30.83,9.66} ps in the time domain. Achieving ps-scale precision with only 3-bit, 7" =
0.77 ns acquisition demonstrates the super-resolution capability of our method.

V-C: High-Order Imaging on Semi-Real ToF Data. This experiment is dedicated to pushing
the limits of our approach in the mixed scenarios of (i) high-order multi-path imaging K = 3 and
weak-strong target detection. We use a calibrated scene with two translucent surfaces with a wall in the
backdrop. The inter-object separation is 1.8 m and 2 m, respectively, with sampling period of 1" = 770
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(a) ToF Measurements: 3 Reflections with 3 Bits (44 Folds). Fig. 9: High-order imaging
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TABLE II: Hardware Experiments: Parameters and Performance Metrics.

Figure Bits K M |gll., A t PSNR
~ V) (ns) (dB)

Fig. 10 6 2 28 7.58 0.33 [72.67,84.91] 40.06
Fig. 10(b) 6 2 29 776 0.33 [72.61,83.05] 40.78
Fig. 10(c) 6 2 48 7.76 0.33 [72.15,79.12] 41.56
— 6 2 24 642 0.33 [72.78,85.03] 39.72

— 6 2 50 642 0.33 [72.57,83.02] 40.65

— 6 2 32 651 033 [71.86,79.00] 41.12

— 6 2 29 526 033 [72.71,84.93] 40.55

— 6 2 28 526 0.33 [72.34,82.76] 40.13

— 6 2 20 526 0.33 [72.30,79.33] 40.17

ps. We evaluate the recovery of a single-pixel ToF measurements at r = [70 50] " which entails a
mixture of weak-strong targets with amplitude ratio max;, |T" [k]| / ming |T' [k]| = 5.42, as shown in
Fig. 9. We use ||g||L., = 10X for modulo folding. Using 3-bits quantization, our approach achieves
signal recovery with PSNR = 40.68 dB. From the experimental results in Table I, the estimated
inter-object separation is 1.83 m and 2.08 m, which accurately matches the experimental setup and
the reported results in [19], [20]. Utilizing the same quantization resolution, the conventional SRes
methods fail to resolve the weak object due to coarse quantization resolution, as shown in Fig. 9 (b).
This corroborates the SRes capability and noise resilience of our method.

VI. HARDWARE EXPERIMENTS

Despite progress in SRes theory and algorithms, hardware validation under low-resolution con-
straints remains limited. To show how digital SRes in USF enables temporal SRes in practice, we
conduct ToF experiments with measurement noise and folding non-idealities [23], [31]. Using the
setup in Fig. 4, the distance between a diffusive surface and a mannequin head is reduced from 1.6
m to 0.7 m. Following [34], ToF signals at r = [100;50] " are acquired with a .#,~ADC (\ = 0.33,
B = 6 bits). To stress-test performance, the DR is increased from |[|g||._ = 15.94) to 23.51\ (Fig. 10),
with experimental parameters and results summarized in Table II.

In comparison with the experimental parameters in [20], both temporal resolution and quantization
resolution are relatively low, which introduces algorithmic challenges in separating two objects via
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Fig. 10: Lock-in sensor based SRes ToF imaging. We benchmark the performance of the
proposed method with experimental setup illustrated in Fig. 4 with dynamic extension
llgllL.. = 23.51\. The diffusive sheet is moving closer to the mannequin head, reducing
the inter-object separation from (a) 1.6 m, (b) 1.3 m to (d) 0.7 m, respectively. Using 6-
bits quantization, our method super-resolves two close objects with estimation error down to 2
cm.

SRes. Under this setup, the FP-SR approach [34] fails due to measurement distortion and spectral
leakage. By contrast, our US-SRes method achieves significantly improved performance: the estimation
error is small, even when the inter-object separation is reduced, as confirmed by experimental results:

1) |lgllL. = 15.94): (a) 1.47 x 1072 m, (b) 1.20 x 1073 m and (c) 3.18 x 1072 m .

2) |lgllL. = 19.72): (a) 5.09 x 1073 m, (b) 2.42 x 1073 m and (c) 7.33 x 1072 m .

3) |lgllL. = 23.51\ in Fig. 10: (a) 1.76 x 1072 m, (b) 6.31 x 10~* m and (c) 2.01 x 1072 m .
This accurately matches the experimental setup and the reported results in [19], [20]. Despite the
challenging experimental conditions, such as measurement noise and hardware imperfection, the
proposed method super-resolves two objects up to a separation uncertainty of centimeter resolution,
utilizing low-resolution acquisition scheme. This effectively demonstrates the SRes capability and
noise resilience, which paves the way for SRes ToF imaging with low-resolution acquisition scheme
[18]-[20].

VII. CONCLUSION

In this paper, we leverage the Unlimited Sensing Framework (USF) to advocate a broader notion of
super-resolution—one that jointly enhances amplitude and temporal resolution. We revisit the classic
problem of recovering off-the-grid spikes or Dirac impulses from filtered measurements, which is
challenged in conventional systems by a trade-off between dynamic range and digital resolution. This
trade-off leads to clipping of strong components or loss of weak ones beneath the quantization noise
floor.

USF addresses this limitation through modulo-based nonlinear encoding at the analog front-end,
enabling digital super-resolution—high measurement precision under low-bit quantization. We show
that this facilitates off-the-grid sparse recovery even under extreme constraints (e.g. 3-bit resolution),
unlocking temporal super-resolution beyond conventional bounds. We provide new theoretical guaran-
tees for non-bandlimited kernels and introduce a robust recovery algorithm that accounts for hardware
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imperfections. Using time-of-flight (ToF) imaging as a testbed, we demonstrate 23x dynamic range
extension and centimeter-level resolution from 3-bit quantized data, validated through simulations
and hardware experiments. These results establish USF as an enabler of joint amplitude-time super-
resolution, opening new possibilities for low-resource sensing and imaging systems.

This work remains at an early stage, with several open challenges offering directions for fu-
ture research. Theoretically, a rigorous analysis of US-SRes under quantization would strengthen
Theorem 2 and provide practical guidelines, while a foundation for the empirical trends in Fig. 2
would advance sparse super-resolution more broadly. Algorithmically, enhancing SRes-IterSiS by
incorporating transient samples and sparse outliers [62], together with a systematic study of its
convergence, noise robustness, and performance bounds, would further support its applicability in
sensing and imaging.

Taken together, the results and open directions highlight the potential of USF not only as a practical
tool for next-generation acquisition systems but also as a foundation for new theoretical advances in
sparse recovery and super-resolution.
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