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ABSTRACT

While sensors have been widely used in various application-
s, an essential current trend of research consists of collecting
and fusing the information that comes from many sensors.
In this paper, on the contrary, we would like to concentrate
on a unique mobile sensor; our goal is to unveil the multi-
dimensional information entangled within a stream of one-
dimensional data, called FRI Sensing. Our key finding is that,
even if we don’t have any position knowledge of the moving
sensors, it’s still possible to reconstruct the sampling trajec-
tory (up to a linear transformation and a shift), and then re-
construct an image that represents the physical sampling field
under certain hypotheses. We further investigate the recon-
struction hypotheses and propose novel algorithms that could
make this 1D to 2D reconstruction feasible. Experiments
show that the proposed approach retrieves the sampling im-
age and trajectory accurately under the developed hypotheses.
This method can be applied to geolocation localization appli-
cations, such as indoor localization and submarine navigation.
Moreover, we show that the proposed algorithms have the po-
tential to visualize the one-dimensional signal, which may not
be sampled from a real 2D/3D physical field (e.g. speech and
text signals), as a two- or three-dimensional image.

Index Terms— Mobile sensing, finite rate of innovation,
sampling theory, image and trajectory reconstruction.

1. INTRODUCTION

The wide availability of cheap sensors of various kinds (in-
ertia, magnetic field, light, temperature, pressure, chemicals
etc.) makes it possible to render a series of technologies and
applications [1], [2]. An important topic in sensor application
research is combining data from various sensors, in particular
fusing geolocation information with other sampled data [3],
[4]. For example, in environmental monitoring [5], the posi-
tioning information is essential for pressure and temperature
sensors to make its data meaningful.

Different from information fusion, conversely we aims to
extract and reveal the multidimensional information hidden
within a series of one-dimensional time samples. We propose
to explore the possibility of reconstructing the physical field
and moving trajectory from a sequence of one-dimensional

signals obtained from a unique mobile sensor without any po-
sitioning device. More abstractly, the core problem is about
reconstructing the two-dimensional image and the sampling
trajectory from one-dimensional time samples without rely-
ing on extra location data. In this paper, we call this task as
FRI Sensing. At first glance, this inverse recovery process
may look like impossible since it suffers from the absence
of multidimensional information (e.g. location, velocity, etc).
However, in this work, we show that there is valuable and
adequate spatial information (2D, 3D) hidden within the 1D
sensor data.

Of course, for our program to be successful, both the tra-
jectory of the sensor and the field sampled should satisfy some
kind of conditions. In order to figure out these constraints, we
thus abide a methodology where we start from the most sim-
ple case and generally relax the constraints step by step to fit
the real applications more accurately. At first, we investigate
the conditions when both the trajectory of the sensor and the
sampling physical field satisfy some kind of sparsity. Name-
ly, the sampling trajectory is made up of several straight line
segments and the image is a finite sum of spatial sinusoids.
Then, we relax the hypotheses on the sampling curve to make
it curved and explore the feasible reconstruction constraints.

We should point out that being able to extract multidi-
mensional information from as little as one stream of one-
dimensional time samples may prove quite useful. A direct
application to which the proposed methods could be applied
is geolocation positioning. Usually, people choose to install
a GPS (Global Positioning System) device to obtain the loca-
tion information with the help of satellites. However, in many
scenarios, positioning via GPS is infeasible and prohibitive
due to energy limitations or environmental restrictions [6],
[7]. For example, in wild animal tracking [8], localization
is a very difficult, expensive process that require bulky tags
that run out of energy quickly [9]. GPS signal can also be too
weak to be detected under deep water [10], [11] or blocked by
the barriers or obstacles [12]. Instead of relying on the GPS
device, our proposed methods could reconstruct the moving
trajectory only through the sampled data, which could poten-
tially improve the positioning accuracy.

While a picture is worth a thousand words, as a com-
pletely different application, we plan to demonstrate the po-
tential of this algorithm for the purpose of visualizing one-
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dimensional signals as a two- or three-dimensional image.
Speech, text signals, but also many others could be considered
eventually, allowing to identify visual clues and characteris-
tics (geometry, texture, etc) in non-visual signals, which do
not necessarily have the corresponding 2D/3D ground truth
images.

The rest of the paper is organized as follows: We show the
basic framework and analysis of FRI sensing in Sect.2. Then,
the details of our experiments are presented in Sect.3. In Sec-
t.4, we talk about the extensions and potential improvements
of the proposed method. We conclude the paper in Sect. 5.

2. FRI SENSING

2.1. Problem Description

Sensor have been broadly used in various areas and render
many applications possible, in particular by fusing data ob-
tained from many sensors. In this paper however, we choose
to concentrate on only one mobile sensor that provides one-
dimensional time samples from a two-dimensional physical
field (e.g. temperature, pressure, etc), and we aim to investi-
gate how much two-dimensional information is hidden there,
i.e. FRI sensing problems. Generally speaking, given the
one-dimensional samples only, without any additional infor-
mation, the problem we propose to investigate is twofold:

• reconstruct the two-dimensional sampling trajectory of
the sensor (up to a linear geometrical transformation
and a shift)

• reconstruct the two-dimensional image that represents
the physical field

To be more specific, assume that a mobile sensor is sampling
an image along a curve without any extra positioning infor-
mation. From the sequence of sensor measurements, our goal
is to retrieve the original image and sampling trajectory of
the sensor. Fig. 1 sketches the above description in a more
intuitive way.

Estimating the 2D image and curve from 1D curvilinear
samples requires solving a number of problems. The first dif-
ficulty is in identifying the conditions under which it’s possi-
ble to retrieve the target curve and image. Since the problem
is ill-posed, achieving the reconstruction within given toler-
ance from as little as one-dimensional samples requires strong
hypotheses on both the sampling curve and image. It’s rea-
sonable to require that the trajectory changes slowly with time
and the image has some form of simplicity/sparsity. Thus, we
need some form of sampling theorems to characterize the con-
straints between the image and curve. A second challenge is,
given certain tolerance how to retrieve the curve information
contained within the 1D samples. We need some method to
extract the characterizations of the curve. A third problem is
how to reconstruct the image as precise as possible. A pos-
sibility to use image interpolation algorithms to reconstruct
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Fig. 1: Our goal (”FRI sensing”) is to reconstruct the physical
filed (a) and the sampling trajectory (b) of the mobile sensor
from the measured curvilinear 1D time samples (c) (framed
by a red box).

the two-dimensional physical field from the samples along the
trajectory found earlier. But with the knowledge of the image
frequency components obtained from the high-resolution fre-
quency estimation algorithms, we may make it more accurate
and robust.

2.2. Strict Hypotheses of FRI Sensing

At first sight, reconstructing both the curve and image from
the given 1D samples seems quite ambitious. However, we
will show that this is achievable and feasible if we control the
hypotheses on the images and the sampling curve properly.
Again, we aim to show that there is valuable spatial (2D, 3D)
information entangled within the 1D uniform samples. For
this reason, we intend to follow a methodology whereby we
slowly relax the hypotheses needed for the algorithms to be
successful, as depicted in Fig. 2.

First, we will investigate the conditions of feasible re-
construction when we know that the physical field is a finite
sum of sinusoidal images and the trajectory is made up of
several line segments. The idea that we will exploit here is
that sampling a sum of two-dimensional sinusoids uniform-
ly along a straight line results in a sum of one-dimensional
sinusoids. If each segment is long enough, using a very
robust high-resolution frequency estimation (Finite rate of
innovation-FRI) [13], [14], [15] algorithm that we have devel-
oped and by pairing properly the results along the trajectory,
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(a) (b)

Fig. 2: (a) Sampling a sum of spatial sinusoids along straight
line segments results in an exact piecewise sinusoidal 1D sig-
nal. (b) Sampling the same image along a curved trajectory
with small curvature results in an approximate piecewise si-
nusoidal 1D signal.

we will eventually obtain the full two-dimensional velocity
of the mobile sensor as a function of time, and parameters
which characterize completely the two-dimensional physical
field. The parametric representation of the velocity can be
converted into a tentative trajectory that can be refined based
on the image found, the samples of which should match the
one-dimensional data.

Then the framework will be extend to smooth curve if the
curve is flat enough compared to the image spatial variation-
s, which requires the curvature radius of the sampling curve
satisfies some form of conditions. Next, we will then extend
this algorithm so that it can be applied to fields that can be
modelized locally as a sum of few sinusoids ––namely, natural
images. We will investigate the limitations on the trajectories
and the images that can be reconstructed. The quantitative
description of these constraints are beyond the scope of this
paper and we will talk about this part of work in the following
papers.

If the sampling is uniform along L segments of straight
lines, it’s easy to see that, in each segment, the samples ob-
tained are sum of sinusoids. More specifically, assume that
the image I(r) (where r = (x, y)T is a Cartesian location)
can be expressed as

I(r) =

K∑
k=1

Cke
juT

k r (1)

for some finite integer K > 2 and a sequence of K image
frequency vectors uk. Assume, moreover that the sampling

locations are uniform along L line segments:

r(t) = alt+ bl, l = 1, 2, · · ·L (2)

Thus, the obtained samples sl(t), l = 1, 2, · · ·L along each
of the L segments take the form of a sum of sinusoids

sl(t) =

K∑
k=1

Cl,ke
jωl,kt, l = 1, 2, · · ·L (3)

where Cl,k = Cke
juT

k bl and ωl,k = uT
k al, for l = 1, 2, · · ·L.

Since the values of t are uniformly sampled within each seg-
ment by assumption, it’s possible to retrieve Cl,k and ωl,k us-
ing a high-resolution frequency estimation algorithm. Here,
we utilize our recent very accurate and robust FRI algorith-
m which is able to approximate arbitrary signals as a sum of
sinusoids––up to the noise level.

Then, we observe that the following K × L matrix by
appropriate arrangement

Ω =


ω1,1 ω2,1 · · · ωL,1

ω1,2 ω2,2 · · · ωL,2

...
...

. . .
...

ω1,K ω2,K · · · ωL,K

 (4)

=
[
u1,u2 · · ·uK

]T︸ ︷︷ ︸
K×2 matrix U

·
[
a1,a2 · · ·aL

]︸ ︷︷ ︸
2×L matrix A

(5)

is actually a matrix of rank at most equal to 2. This means
that, we need an image made of at least K = 2 different si-
nusoids, and a curve with at least L = 2 segments to retrieve
the matrix of spatial frequencies U and the matrix of curve
directions A up to an arbitrary 2 × 2 linear geometric trans-
formation Q: U

′
= Q−TU and A

′
= QA. Of course, an

image with richer frequency components (K > 3) and a curve
with more line segments (L > 3) will lead to more interesting
results and also more robust reconstruction (Utilizing SVD to
exploit the rank-2 property of the matrix Ω).

2.3. Frequency pairing

Although we did not mention it earlier, pairing the frequen-
cies found in two different segments could be an issue. How-
ever, there are several clues that help identify which frequen-
cy in segment l corresponds to which frequency in segment
l
′
. One available choice is the amplitude of Cl,k of the sinu-

soid attached to that frequency, whose absolute value should
be invariant across segments. Another clue is, of course, that
when the frequencies have been paired accurately, the matrix
Ω should be of rank-2––or in the situation of inaccuracies, can
be approximated accurately by a rank-2 matrix. They both
provide effective criterion to evaluate the paired results.
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2.4. Relaxing the hypotheses on the curve

Instead of assuming that the sampling curve is made of
straight line segments, we suppose that the curvature ra-
dius––i.e. the inverse of the curvature––of the curve is small
enough compared to the spatial frequencies of the sinusoidal
images, then we can still apply the line segment strategy, as
illustrated in Fig. 2. The idea we exploit here is that using
several line segments to approximate the original sampling
curve.

2.5. Scheme Overview

Based on the above process, we propose a novel algorithm
to reconstruct the physical field and sampling trajectory from
one-dimensional samples as shown in Algorithm 1.

Algorithm 1: Reconstructing image and curve from 1D sam-
ples

Input: 1D uniform samples s(t)
1: Divide the samples into several sub-signals sl(t), l =

1, 2, · · ·L
2: Estimate local frequency components Cl,k and ωl,k

3: Obtain the frequency matrix Ω through pairing process
4: Estimate the matrix of spatial frequencies U and curve

directions A
Output: The reconstructed physical field I(r) and the sam-

pling curve r(t)

3. EXPERIMENTAL RESULTS

In order to estimate the performance of our proposed method,
we sample an image made up of 5 spatial sinusoids (K = 5)
along a trajectory. Here, the samples sensed are corrupted by
10dB PSNR noise during acquisition. The sampling process
and the reconstruction results are shown in Fig.3.

We need to define some measures to evaluate the error
between the final reconstruction and the ground truth. Let C1

and C2 denote the ground truth and the reconstructed curve,
respectively. Then, we define:

D = max
z1∈C1

min
z2∈C2

||z1 − z2|| (6)

which characterizes the largest distance between the recon-
struction trajectory C2 and the ground truth C1. As for the
image, we use the PSNR value to characterize the image re-
construction accuracy.

Thanks to the the robust high-resolution frequency esti-
mation methods, we can extract the frequency contents with
expected accuracy. The experimental results show that the
proposed method can reconstruct the sampling curve (D =
2.14 pixels) and the image accurately (PSNR = 20.56 dB).
Note that, compared to the frequency estimates, amplitudes
are less accurate and robust, which reminds us that it is not
necessary to reconstruct the sampled image only through the

estimated parameters of the image contents. Since we have re-
trieved the samples position, a possibility is to use radial basis
functions to perform the high quality image interpolation al-
gorithm to reconstruct the two-dimensional physical field for
scattered data.

(a): Original image
(512 × 512)

(b): Sampling curve

(c): Curvilinear 1D samples (noise: 10 dB PSNR)

(d): Reconstructed image
(PSNR = 20.56 dB)

(e): Reconstructed curve
(D = 2.14 pixels)

Fig. 3: Reconstruction of an image made up of 5 spatial sinu-
soids from noisy curvilinear samples.

4. EXTENSION AND FUTURE WORK

In the future, we plan to further relax the hypotheses on the
physical field. Relaxing the hypotheses on the 2D physical
field means making the global sum of sinusoids assumption to
hold only locally. Hence, we only expect to be able to recon-
struct the curve locally, which implies that the global recon-
struction may suffer from some form of drift. We plan to de-
velop a sampling theorem that guarantees reconstruction un-
der hypotheses on both the physical field and on the curve. We
also plan to extend our method to three-dimensional physical
field sampled along 3D curves. We hope that this work will
ultimately provide new tools for processing one-dimensional
data as images.

5. CONCLUSIONS

In this paper we show it is possible to retrieve the multidi-
mensional information that is hidden within a stream of one-
dimensional time samples. A novel method (FRI sensing)
based on high-resolution frequency estimation techniques is
proposed to obtain the 2D image and curve reconstruction
from the one-dimensional uniform samples. Experimental re-
sults verify our theory, showing that the proposed method is
capable of reconstructing the physical field and the sampling
trajectory accurately.
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