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Abstract—Event-driven or Time-encoded sampling is an alterna-
tive to the conventional uniform sampling paradigm that encodes
the amplitude information of a continuous-time signal into a
sequence of time stamps. The data-driven approach of event-driven
acquisition provides significant power efficiency advantages, as
it initiates sampling exclusively upon the detection of specific
events, such as amplitude changes. In recent years, the focus
of event-driven sampling has shifted from bandlimited function
classes to time-domain sparse signals. That said, the case of
Fourier-domain sparse signals (frequency or spectral estimation
problem) remains open. In this paper, we introduce a novel method
for off-the-grid, event-driven frequency estimation (ED-FreEst).
Empirically, our algorithm results in a lower sampling rate while
offering robustness. These aspects seamlessly translate into real-
world validation. To demonstrate this, we build an event-driven
sampling hardware utilizing asynchronous sigma-delta modulators,
showcasing the practical utility and effectiveness of our method in
tangible applications.

Index Terms—Event-driven, nonuniform sampling, frequency
estimation, time-encoded sampling.

I. INTRODUCTION

A fundamental question in digital acquisition is how to
represent a continuous-time signal as a discrete sequence.
Underpinning the prevalent digitalization technology, the
Shannon-Nyquist sampling scheme [1] represents a bandlimited
signal based on its amplitude samples taken at or above the
Nyquist rate by utilizing a synchronous clock. In contrast, one
can get away from the synchronous setting and sample the
signal only when there is an event. This leads to an alternative
sampling paradigm that is known by, ASYNCHRONOUS [2]–[5],
IRREGULAR [6], [7], EVENT-DRIVEN [8], TIME-ENCODED [9],
SEND-ON-DELTA Sampling [10], [11] which has been widely
studied due to its advantage of being power efficient.

Existing works on the event-driven sampling or EDS are
predominantly concentrated on bandlimited signal classes.
Several papers in the recent years have started to consider time-
domain sparse signals [12]–[16]. Apart from the bandlimited and
sparse signal classes, another class of signals that plays a pivotal
role in application areas is that of Fourier-domain sparse signals.
Such signals take the form of a sparse mixture of sinusoids in
the time-domain and the field of frequency or spectral estimation
is devoted to the recovery of sinusoidal parameters [17], [18].
Despite their prevalence, such signals have not been considered
in the literature. This can be attributed to various reasons. Firstly,

The work of the authors is supported by the UK Research and Innova-
tion council’s FLF Program “Sensing Beyond Barriers via Non-Linearities”
(MRC Fellowship award no. MR/Y003926/1). Further details on Unlimited
Sensing and upcoming materials on reproducible research are available via
https://bit.ly/USF-Link.

sinusoidal mixtures can be interpreted as a specific case of
bandlimited signals. However, this viewpoint leads to sub-optimal
recovery as it does not leverage the parametric structure of the
sinusoids. Secondly, algorithmic approaches for time-decoding
[9] do not straightforwardly translate to sparse or parametric
signals [12]–[16]. In this context, the consideration of sparse
signals is only very recent and it is natural to consider time-
domain sparse signals as a first prototype example. Finally, EDS
ADCs are still not mainstream yet and hence, such hardware has
not been confronted with problems such as direction-of-arrival
estimation which intrinsically requires sinusoidal estimation.

Contributions. In this paper, we present an event-driven
frequency estimation algorithm called ED-FreEst, that directly
extracts the frequency component from its time-encoded
measurements. Compared to the sequential reconstruction (i.e.,
signal recovery followed by frequency estimation), this allows
for high-resolution frequency estimation with lower sampling
rate (trigger times). Our main contributions are as follows.
• We propose a novel algorithm that directly retrieves the

spectral information from its time-encoded measurements.
Our algorithmic machinery is based on deconstructing non-
linear multidimensional optimization problem into a sequence
of one-dimensional optimization problems, which results in a
computationally efficient implementation.

• Since practical validation of EDS has been rarely reported
in previous works, the validity of theoretical algorithms
in real-world scenarios remains unknown. To this end,
we build EDS hardware utilizing asynchronous sigma-delta
modulators (ASDM) to validate our approach, demonstrating
its performance in realistic settings.

II. EVENT-DRIVEN SAMPLING OF MULTIPLE SINUSOIDS

Problem Formulation. The EDS scheme used in this paper is
depicted in Fig. 1, which represents the amplitude information of
the input signal g(t) as a time sequence {tn}n∈Z. The bounded
input signal g(t), |g(t)| ⩽ c < b, is shifted by a constant amount
±b before being fed into the integrator. The bias b ensures that
the integrator’s output y(t) is a positive (negative) increasing
(decreasing) function of time. There are two possible operating
modes in steady state. In the first mode, the output of the EDS is
in state z(t) = −b and the input to the Schmitt trigger increases
from −δ to δ. When the output of the integrator reaches the
maximum value δ, a transition of the output signal z(t) from −b
to +b is triggered and the feedback changes the sign (becomes
negative). In the second mode of operation, the EDS is in the
state z(t) = b and the integrator output steadily decreases from
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Fig. 1. The block diagram and hardware implementation of the EDS paradigm.

δ to −δ. When the minimum value −δ is achieved, z(t) will
reverse to −b. Therefore, while the transition times of the output
z(t) are non-uniformly spaced, the modulus of the output signal
z(t) remains constant, i.e.|z(t)| = b. As a result, a transition
of the output from −b to b or vice-versa takes place every
time the integrator output reaches the triggering threshold δ or
−δ. Hence, the EDS maps amplitude information into timing
information via a signal-dependent sampling paradigm.

In this paper, we focus on the sum-of-sinusoids input

g(t) =
∑K−1

k=0
cke

ȷωkt, t ∈ [0, τ ] (1)

which generates an encoded time sequence {tn}Nn=0. Our goal
is to retrieve the signal parameters {ck, ωk}K−1

k=0 from the time
sequence {tn}Nn=0 at the output of the EDS.

Sampling Conditions. We show that the recovery is possible
via a time-decoding machine, that is, the input signal g(t) can
be recovered from {tn}Nn=0 without any loss of information.

By design (see Fig. 1), the sequence of trigger times {tn}Nn=0

is generated by the recursive equation∫ tn+1

tn

g(t)dt = (−1)n [−b (tn+1 − tn) + 2κδ] . (2)

Without any loss of generality, a simple version of the EDS
will be used assuming |g(t)| ⩽ c < 1,∀t ∈ [0, τ ], b = 1 and
κ = 1/2, which leads to the simplified equations,∫ tn+1

tn

g(t)dt = (−1)n [δ − (tn+1 − tn)] (3)

where
∑K−1

k=0 |ck| < 1. From (3), we have the following result:

Proposition 1. For an arbitrary bounded signal g(t) with
|g(t)| ⩽ c < 1,∀t ∈ [0, τ ], the distance between consecutive
trigger times tn and tn+1 is bounded by

δ

1 + c
⩽ tn+1 − tn ⩽

δ

1− c
, n ∈ [0, N − 1] . (4)

Proof. With |g(t)| ⩽ c < 1, we know that −c(tn+1 − tn) ⩽∫ tn+1

tn
g(t)dt ⩽ c(tn+1 − tn). By replacing the integral in (3)

and solving for tn+1 − tn, we obtain the desired result.

The indicator function on domain D is denoted by 1D.

The input signal g(t) is bandlimited to [−Ω,Ω] where Ω =
maxk |ωk|. Let the operator A (·) be defined as

A (t) =
∑

n∈Z
g(sn)fn(t) (5)

where fn(t)
def
=

(
hΩ ∗ 1[tn,tn+1]

)
(t), hΩ(t) = sin (Ωt) /πt and

sn = (tn+1 + tn) /2. Denote by gl(t), t ∈ [0, τ ] a sequence of
bandlimited functions defined by the recursion

gl+1 = gl +A (g − gl) , l ∈ N (6)

with the initial condition g0 = A (g) (gl = gl(t)). Then, the
signal g(t) can be recovered from its associated trigger times
{tn}Nn=0, as liml→∞ gl(t) = g(t), provided that [9],

δ <
(1− c)π

Ω
, Ω = max

k
|ωk| . (7)

Once g(t) is recovered, {ωk}K−1
k=0 can be retrieved from a

sequence of uniform samples {g(mT )}M−1
m=0 via Prony’s method

[17], provided that T ⩽ π
Ω . With {ωk}K−1

k=0 known, {ck}K−1
k=0

can be obtained via least-squares.

III. ED-FreEst: EVENT-DRIVEN FREQUENCY ESTIMATION

In this paper, instead of performing sequential reconstruction,
viz. , recover g(t) from {tn}Nn=0 first and estimate {ck, ωk}K−1

k=0

later, our goal is to achieve frequency estimation directly from
the time sequence {tn}Nn=0.

Our starting point is the non-uniform measurements from the
output of the integrator. Combining (1) and (3), we have,

y[n] =

∫ tn+1

tn

g(t)dt
(1)
=

∑K−1

k=0
ck

(
eȷωktn+1 − eȷωktn

)
(8)

where n = 0, · · · , N − 1 and ck = ck
ȷωk

, k = 0, · · · ,K − 1.
Notice that, {y[n]}N−1

n=0 can be obtained from {tn}Nn=0,

y[n]
(3)
= (−1)n [δ − (tn+1 − tn)] . (9)

Direct Frequency Estimation from EDS Samples. Given
{y[n]}N−1

n=0 , we consider estimating the unknown parameters by
minimizing the below quadratic function

J (c,ω) =

N−1∑
n=0

∣∣∣∣∣y[n]−
K−1∑
k=0

ck(e
ȷωktn+1 − eȷωktn)

∣∣∣∣∣
2

(10)
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Algorithm 1 Event-Driven Frequency Estimation
Input: Time sequence {tn}Nn=0.

1: Compute the samples {y[n]}N−1
n=0 via (9).

2: Compute the parameter initialization {c[0]k , ω
[0]
k }K−1

k=0 .
3: for l = 1 to max. iterations do
4: for m = 1 to K do
5: Compute the residue ym via (11).
6: Update {c[l]k , ω

[l]
k } via (13) and (14).

7: end for
8: if (16) holds then
9: Terminate all loops;

10: end if
11: end for
Output: The reconstructed signal g(t).

where c = [c0, · · · , cK−1]
⊤ and ω = [ω0, · · · , ωK−1]

⊤, where
(·)⊤ denotes the transpose. Minimizing J (c,ω) in (10) is
equivalent to maximizing the likelihood when the measurements
y[n] is corrupted by white Gaussian noise. Even when the noise
is not white, minimizing J (c,ω) still results in an excellent
statistical accuracy as reported in [19]–[22].

The minimization on J (c,ω) with respect to the unknown
parameters is a highly non-linear optimization problem. Below,
we present a novel algorithm to obtain the frequency parameter
estimates in an iterative orthogonal matching pursuit (OMP)
manner. Before we state our method, let us introduce the
following notations. Let g (ωk) = [eȷωktn+1 − eȷωktn ]N−1

n=0 ,
y = [y[0], · · · , y[N − 1]]⊤, and c = [c0, · · · , cK−1]

⊤. Denote

ym = y −
∑

k ̸=m
ĉkg (ω̂k) (11)

where {ĉk, ω̂k}K−1
k=0,k ̸=m are known. Then, (10) becomes

J (cm, ωm) = ∥ym − cmg (ωm)∥22 (12)

where ∥·∥ denotes the ℓ2 norm. Notice that, minimizing (12)
on cm, ωm can be decoupled separately, where the estimate ĉm
of cm can be characterized by the estimate ω̂m of ωm as

ĉm =
⟨g (ωm) ,ym⟩
∥g (ωm)∥22

∣∣∣∣∣
ωm=ω̂m

(13)

where ⟨·, ·⟩ denotes the inner product. Hence, with (13), the
estimate ω̂m of ωm is given by

ω̂m = argmaxωm
|⟨u (ωm) ,ym⟩| (14)

where u (ωm) = g(ωm)
∥g(ωm)∥2

. Notice that, ω̂m is obtained as the
location of the dominant peak of the magnitude of the cross-
correlation between u (ωm) and ym, which can be efficiently
solved via 1-D optimization methods, such as Golden section
search algorithm, dichotomic search approach, etc.

Given initial parameter estimates, we can iteratively refine
each frequency component {cm, ωm} in an orthogonal matching
pursuit (OMP) manner: in m-th iteration, we compute the residue
ym via (11) by excluding the remaining frequency components
{ĉk, ω̂k}K−1

k=0,k ̸=m. Then, the parameter estimates {ĉm, ω̂m} can

Time-Encoded Measurementsa

Signal Recoveryb

Fig. 2. Numerical Experiment: (a) Time-encoded samples and (b) signal
recoveries. The frequencies to be estimated are fk = [8, 20, 30]Hz. The sampling
rates are f̄s = 10kHz (sequential reconstruction) and fs = 2kHz (ED-FreEst).
The low sampling rate results in distortion in sequential reconstruction
(E2

(
fk, f̄k

)
= 6.43× 10−1), yet ED-FreEst provides an accurate recovery

with E2

Ä
fk, f̃k

ä
= 1.94× 10−3.

be updated via (13) and (14). As a result, the non-trivial multi-
dimensional minimization problem can be transformed into a
series of 1-D optimization problems, allowing for an efficient
and accurate algorithm implementation.

Convergence and Algorithm Initialization. We design a robust
parameter initialization strategy to ensure a fast convergence
speed of the proposed event-driven frequency estimation
algorithm (ED-FreEst). From (14), it suffices to show that the
cross-correlation function C (ω) = |⟨u (ω) ,ym⟩| attains local
maxima at ω = ωk, k = 0, · · · ,K−1. Therefore, a deterministic
parameter initialization can be obtained by evaluating C (ω)
on a frequency grid and pick the K most prominent peaks
(“islocalmax” function in Matlab) [22].

The algorithm is bound to converge to at least some local
minimum point [23], since the minimization results in

J (ĉm, ω̂m)
(14)
⩽ J (ĉm+1, ω̂m+1) . (15)

The convergence speed depends on the frequency spacing of
the signal g(t). If the separation between any two frequencies
is sufficiently large, the algorithm converges in a few steps.
As the frequency separation becomes closer, the convergence
speed becomes slower. We keep iterating the algorithm until
the relative change of the cost function J (c,ω) between two
consecutive parameter estimates is sufficiently small, i.e.,

J
Ä
c[l],ω[l]

ä
− J

Ä
c[l+1],ω[l+1]

ä
⩽ ϵ (16)

where l = 0, · · · , lmax and ϵ is a positive value. The procedure
is summarized in Algorithm 1.
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TABLE I
NUMERICAL AND HARDWARE EXPERIMENTAL PARAMETERS AND PERFORMANCE EVALUATION.

Figure N fs f̄s κ δ b ∥g∥∞ fk f̃k f̄k E2

Ä
fk, f̃k

ä
E2

(
fk, f̄k

)
E2(g, g̃) E2(g, ḡ)

(kHz) (kHz) (Hz) (Hz) (Hz)
Numerical Experiments

— 387 7.50 300.00 4.38× 10−4 1.50 1.80 0.60 15.0 15.01 15.00 1.72× 10−4 2.20× 10−8 9.05× 10−6 7.31× 10−6

— 345 1.50 30.00 4.38× 10−4 1.50 1.80 0.60 15.0 15.00 14.99 1.86× 10−5 4.97× 10−5 9.82× 10−7 1.58× 10−2

— 521 6.00 300.00 4.38× 10−4 1.50 2.40 1.20 [8.0, 20.0, 30.0] [8.04, 19.98, 30.11] [7.99, 19.96, 29.97] 4.34× 10−3 9.03× 10−4 2.11× 10−4 4.24× 10−6

Fig. 2 636 2.00 10.00 4.38× 10−4 1.50 2.40 1.20 [8.0, 20.0, 30.0] [8.01, 19.93, 30.02] [7.26, 18.88, 29.62] 1.94× 10−3 6.43× 10−1 1.41× 10−4 6.26× 10−3

Hardware Experiments
— 189 15.62 500.00 5.78× 10−4 0.95 4.73 5.17 37.0 37.03 36.98 1.16× 10−3 3.60× 10−4 8.53× 10−4 2.08× 10−3

— 204 15.62 500.00 5.54× 10−4 0.95 4.73 5.17 57.0 57.01 56.96 5.20× 10−5 1.58× 10−3 8.26× 10−4 2.58× 10−3

— 214 15.62 500.00 5.46× 10−4 0.95 4.73 5.08 77.0 76.85 77.04 2.17× 10−2 1.49× 10−3 1.54× 10−3 2.58× 10−3

Fig. 3 308 15.62 500.00 4.18× 10−4 0.95 4.72 4.60 [13.0, 59.0, 97.0] [14.09, 58.56, 97.80] [19.17, 55.75, 97.98] 6.71× 10−1 1.65× 101 6.08× 10−4 1.55× 10−3

Time-Encoded Measurementsa

Signal Recoveryb

Fig. 3. Hardware Experiment: (a) Time-encoded samples and (b) signal
recoveries. The frequencies to be estimated are fk = [13, 59, 97]Hz. The
sampling rates are f̄s = 500kHz (sequential reconstruction) and fs = 15.62kHz
(ED-FreEst). Despite 32× downsampling, ED-FreEst still achieves an accurate
signal recovery as well as frequency estimation (E2

Ä
fk, f̃k

ä
= 6.71× 10−1),

validating its performance and practical utility.

IV. NUMERICAL AND HARDWARE EXPERIMENTS

The overarching goal of our experiments is to push the
sampling rate on trigger times and duration of the proposed
ED-FreEst approach. In particular, through a series of 8 exper-
iments, we show that the frequency information can be directly
retrieved from the time-encoded measurements, utilizing an
asynchronous sigma–delta modulation implementation, providing
a factor of 30× improvement on sampling rate in real-world sce-
narios. This also serves as a validation of our method (Algorithm
1) presented in Section II. We compare the proposed method to
the sequential reconstruction via (5) and (6) to demonstrate the
algorithm performance. For a sum of sinusoids g as defined
in (1), we use g̃ (f̃k) and ḡ (f̄k) to denote the signal recovery
(frequency estimates) by the proposed method and sequential
reconstruction, respectively. We use the mean-squared error,
E2

Ä
fk, f̃k

ä
= 1

K

∑K−1
k=0 |fk − f̃k|2 to evaluate the frequency

estimation error. We use E2(g, g̃) =
1
M

∑M−1
m=0 |g[m]− g̃[m]|2

to measure signal recovery error. Experimental parameters
such as, ground-truth frequencies fk, dynamic range, sampling
rate fs (ED-FreEst method), sampling rate f̄s (sequential

reconstruction), bias b, among others are tabulated in the first
row of Table I, respectively.

Numerical Experiments. In noiseless scenarios, numerical
experiments show that the proposed method gives rise to an
accurate signal recovery and frequency estimation, offering
30-50× reducing on sampling rate. In particular, we observe that
the sequential reconstruction method compromises estimation
accuracy at f̄s = 10kHz as illustrated in Table I and Fig. 2.
ED-FreEst achieves higher frequency estimation precision at a
lower sampling rate of 2kHz, using dichotomic search for (14).

Hardware Experiments. To assess the practicability and
robustness of our method, we further perform hardware
experiments based on asynchronous sigma–delta modulator
that implements the EDS pipeline described in Fig. 1. The sum
of sinusoids is generated by TG5011A signal generators via
amplitude modulation (AM). The experimental parameters and
results are summarized in Table I.

We conduct experiments in both single- and multiple-sinusoids
case. The time-encoded samples and corresponding signal recov-
eries are plotted in Fig. 3. As shown in Fig. 3 (b), the sequential
reconstruction is sensitive to the sampling rate (f̄s = 500kHz),
yielding distortion around t = 0.01 sec. This reconstruction
error eventually results in error on frequency estimation with
E2

(
fk, f̄k

)
= 1.65×101 and E2(g, ḡ) = 1.55×10−3. Despite a

much lower sampling rate on trigger times with fs = 15.62kHz,
ED-FreEst achieves a more accurate frequency estimation as
well as signal recovery with E2

Ä
fk, f̃k

ä
= 6.71 × 10−1 and

E2(g, g̃) = 6.08×10−4. These hardware experiments effectively
demonstrate the practical utility and robust performance of
ED-FreEst algorithm in real-world applications.

V. CONCLUSION

As an alternative to capturing signal amplitude at uniform time
instances, EDS scheme only samples the signal non-uniformly,
converting the amplitude information into a sequence of time
stamps. In this paper, we focus on the sums of sinusoids signal
and design a novel algorithm that allows for a direct frequency
estimation from its time-encoded samples. This reduces the
sampling rate on trigger times and provide a high-resolution
frequency estimation. We go beyond numerical experiments and
also provide a hardware validation of our approach, thus bridging
the gap between theory and practice, while corroborating the
potential benefits of our method.
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