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ABSTRACT

Unlimited Sampling Framework (USF) is a digital acquisition
protocol that recovers high dynamic range (HDR) input signals from
their low dynamic range, modulo samples. Current USF theory and
algorithms are predominantly focused on bandlimited signal classes
that rely on a relatively high sampling rate. Recently, the “Fourier-
Prony” algorithm was proposed and validated via hardware experi-
ments with modulo ADCs. It was shown that this algorithm offers
competitive performance in the presence of system noise and quan-
tization, especially when periodic boundary conditions are satisfied.

In practice, signals are often measured over a finite observation
window and this implies leakage in the Fourier domain. Depend-
ing on the severity of spectral leakage, Fourier domain algorithms
may fail to reconstruct. To overcome this bottleneck, in this pa-
per, we propose an Iterative Signal Sieving Algorithm (ITER-SIS)
that solely operates in the time domain. By utilizing a continuous-
domain characterization of modulo samples, ITER-SIS achieves a
robust, low-sampling-rate, FFT-free recovery of signals with a finite
time observation window, even when there is considerable spectral
leakage. Hardware experiments with the modulo ADC demonstrate
the robustness of our method in a realistic, noisy and low-sampling
rate settings, thus validating its high practical utility in a variety of
applications.

Index Terms—ADC, modulo, non-linear reconstruction, sam-
pling, sparse recovery, super-resolution.

1. INTRODUCTION

Practical implementation of the Shannon–Nyquist sampling frame-
work entails pointwise acquisition of a continuous-time signal via an
analog-to-digital converter (ADC). Such samples are prone to signal
clipping or saturation and this poses a fundamental bottleneck when
it comes to digital sensing. In a series of companion papers [1–7],
the Unlimited Sensing Framework (USF) was introduced as an alter-
native to Shannon-Nyquist sampling paradigm. The goal of the USF
is to acquire signals which are way beyond the dynamic range of a
conventional ADC, thus overcoming the dynamic range barrier that
is fundamental to conventional sampling framework.

The USF enables High Dynamic Range (HDR) capture by bas-
ing itself on a joint-design of hardware and algorithms. This is dif-
ferent from the Shannon–Nyquist methodology where hardware and
reconstruction algorithms are decoupled from each other. More pre-
cisely, before capturing pointwise samples, in the USF, a modulo
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terials on reproducible research are available via https://bit.ly/USF-Link.
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Fig. 1. Oscilloscope screenshot of a sine-wave at the output of our
modulo ADC or Mλ–ADC [5].

non-linearity of the form,

Mλ : g 7→ 2λ
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= g − ⌊g⌋ , λ ∈ R+

(1)
where ⌊g⌋ = sup {k ∈ Z| k ⩽ g} (floor function) is injected in the
sampling pipeline. By design, an arbitrary HDR continuous-time sig-
nal is folded back into the ADC’s dynamic range [−λ, λ], thus pre-
venting saturation or clipping; a hardware example is shown in Fig. 1.
Thereon, the folded signal is sampled in a pointwise fashion. This
constitutes the modulo ADC or Mλ–ADC architecture,

Input g (t) −→ Mλ(·) −→ Sampling −→ y [n] = Mλ(g (nT )).

Once the folded samples are acquired, we use novel, mathemati-
cally guaranteed, recovery algorithms that amount to “inverting” the
Mλ(·) operator; this enables recovery of HDR signal from its low
dynamic range, modulo samples.

A hardware prototype for Mλ–ADC was introduced in [5]. It was
experimentally demonstrated in [5] that signals in the span of up to
30λ can be recovered in practice. Subsequently, beyond algorithmic
efforts, the effectiveness of USF via initial hardware experiments was
explored in a variety of contexts.
Motivation. Our work is motivated by the issues that arise at the
intersection of theory and practice of the USF. Currently, there are
two algorithms that have been validated on the Mλ–ADC hardware.
1. The first method is the unlimited sampling algorithm or US-Alg

introduced in [1] which was initially designed for noiseless sce-
narios. This method works for signals on the real line. It was
adapted for the case of bounded noise in [2] but requires substan-
tial oversampling (see Theorem 3, [2]). A different time-domain
algorithmwas developed in [7] that can handle measurement non-
idealities by working with a generalized version of modulo non-
linearity. Similar to the US-Alg, the approach in [7] also requires
oversampling.

2. The second method is the “Fourier-Prony” algorithm or FP-Alg.
This method operates in the Fourier domain; it was designed forIC
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signals on a finite interval (e.g. periodic signals), offers the tight-
est possible sampling rate (see Theorem 2, [5]), and is agnostic to
λ. Through extensive experiments, [5, 6, 8], the FP-Alg is known
to be robust to system noise and perturbations that arise in prac-
tice. Recently, a modified version of FP-Alg was proposed in [9];
this method uses an alternative spectral fitting method in the FP-
Alg together with time-domain constraints and requires λ to be
known.

For real-world applications, one may only measure signals on a fi-
nite interval. In this case, the US-Alg is not applicable. While FP-
Alg offers a competitive performance, it suffers from a bottleneck
that is intrinsic to the Fast Fourier Transform (FFT) implementation,
that is, spectral leakage. Whenever the modulo samples suffer from
spectral leakage, FP-Alg-likemethods e.g. [9] perform sub-optimally
and may completely fail depending on the severity of spectral leak-
age. This necessitates the development of a robust, low-sampling-
rate, FFT-free algorithm that can handle signals on finite intervals
and offer a competitive performance on Mλ–ADC hardware.

Contributions. In this paper, we present the Iterative Signal Sieving
algorithm or IterSIS-Alg that overcomes the limitations of US-Alg
and FP-Alg. The key features of IterSIS-Alg are as follows.

1. Agnostic to Spectral Leakage. A finite observation window im-
plies leakage in the Fourier domain; this creates algorithmic chal-
lenges for extracting the bandlimited. Since IterSIS-Alg oper-
ates in the time-domain, this is no longer a bottleneck.

2. Robustness. The combination of quantization and system noise
can lead to non-ideal measurements. This is particularly a prob-
lem for the estimation of instants where modulo folds occur.
The IterSIS-Alg is empirically robust to both bounded and
unbounded noise models.

3. Tight Sampling Rates. Signal recovery from a small amount of
data samples is preferable in practice as a large oversampling rate
puts forward higher demand on sampling hardware. The phase-
transition curve in Fig. 4 shows that in noisy scenarios, IterSIS-
Alg operates with moderate oversampling.

2. SAMPLING PIPELINE AND PROBLEM FORMULATION

In this paper, we will focus on arbitrary Ω–bandlimited, square-
integrable functions, g ∈ BΩ observed within a finite time window
of size t0 to match the practical scenarios. Previously, we assumed
periodic boundary conditions in [5] to avoid spectral leakage when
applying FFT but this is not the case in this paper. Uniform sampling
of g(t), t ∈ [0, t0) with sampling step T > 0 gives rise to samples
{g[n] = g(nT )}N−1

n=0 , where N = ⌊t0/T ⌋. In our context, the
modulo samples are contaminated by quantization and system noise
(e.g. additive Gaussian), denoted by e [n], and are expressed as

ye[n] = Mλ(g(nT ))︸ ︷︷ ︸
y[n]

+e[n]. (2)

This signal model mimics the hardware experiments implemented
with the Mλ–ADC, which accurately describes the practice (see later
experiments in Sec. 5).

Goal. GivenN noisymodulomeasurements {ye[n]}N−1
n=0 , our goal is

to recover the unfolded samples g[n]; thereafter g ∈ BΩ is recovered
via Shannon interpolation as soon as the samples g[n] are known.

50 100 150 200
Samples

-2
-1
0
1

Modulo Samples

Recovery by Signal Sieving

Iterations

StopStart

<latexit sha1_base64="yJNxaF9sFlDbHjUs1HJ8g8P189Y="></latexit>���

<latexit sha1_base64="DwFdt+0hhTcINS0Gm2FOpx/MhPI="></latexit>

+++

SIEVE 
Residuals

SI
EV

E 
 

Ba
nd

lim
ite

d 
Fu

nc
tio

n

Fig. 2. Flowchart of the iterative signal sieving (IterSIS-Alg).

3. ROBUST RECOVERY METHOD

Overview of Recovery Method. We begin our discussion with the
modular decomposition property [2] that leads to the representation,

g = Mλ(g) + εg, t ∈ [0, t0) , εg (t) =
∑K−1

k=0
ck1Dk (t) (3)

where ck ∈ 2λZ, εg (t) is the residue function and 1D is the indica-
tor function on domainD with ∪·mDk = R. The key to our recovery
approach is a sieving approach; the modulo samples are decomposed
into two sieves satisfying the respective constraints for g and εg ,

Mλ(g)︸ ︷︷ ︸
Modulo Signal

(3)
= g ∈ BΩ︸ ︷︷ ︸

Bandlimited Sieve

+ εg ∈ 2λZ︸ ︷︷ ︸
Residual Sieve

. (4)

The notion of “sieving” is similar to the idea of how separating sig-
nals based on their structure. To give the reader an idea about the
IterSIS-Alg (see Algorithm 1), we show the action of our method
on hardware data (Experiment 4 in [5]) in Fig. 2. The algorithm iter-
ates (blue curves) till a stopping criterion is met and the reconstruc-
tion is achieved (red curve).

Instead of operating on (4), we operate in the finite-difference or
∆ domain,

∆y[n] = ∆g[n]−
∑K−1

k=0
ckδ[n− nk] ≡ (∆g −∆εg) [n] (5)

where {ck, nk}K−1
k=0 encode the unknown folding instants due to the

Mλ–ADC. Obviously, the number of folding instants depends on the
setup of the Mλ–ADC threshold λ. When working with noisy mod-
ulo samples (2), we have, ∆ye[n] = ∆y[n] + ∆e[n] where e[n]
arises from quantization and system noise. This data corruption to-
gether with a finite observation window yields spectral leakage out
of the bandwidth. Hence, the previous strategies of high-order dif-
ference [1, 2] or Fourier domain partitioning [5, 6, 8] may not apply.
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In our work, we will directly operate in the time-domain by sieving
the signal according to (5).
Sieve #1: Spike Estimation. We utilize a continuous-time charac-
terization of ∆εg[n] =

∑K−1
k=0 ckδ[n− nk] as g [n] can be easily

obtained by removing the residue ∆εg[n] from ∆y[n] and applying
the anti-difference operator. Given a Dirac mass δ[n − n0], n0 ∈
Z, n ∈ [0, N − 1], we leverage the following parameterization1,

δ[n−n0] =
1

N

sin
(
(n− n0)π

)
sin ((n− n0)π/N)

≡ 1

N

1− eȷ2π(n−n0)

1− eȷ2π(n−n0)/N
. (6)

In other words, (6) provides a continuous model to characterize the
spike. Given a stream ofK shifted spikes, (6) translates to,

∆εg[n]
(5),(6)
=

K−1∑
k=0

c̆k

1− e−ȷ
2πnk

N eȷ
2πn
N

=
PK−1 (ξ

n
N )

QK (ξnN )
(7)

where,
—• PK−1 (ξ

n
N ) andQK (ξnN ) are polynomials of degreeK−1 and

K, respectively with ξnN = eȷ
2πn
N .

—• c̆k =
(
1− e−ȷ2πn0

)
ck/N .

In fact, QK (ξnN ) corresponds to an annihilation filter (i.e. Prony’s
method); its roots uniquely encode the spike-locationsnk in∆εg[n] =∑K−1

k=0 ckδ[n− nk]. Note that, ratio in (7) has 2K degrees of free-
dom; this is exactly the number of unknown parameters {ck, nk}K−1

k=0

in∆εg . Hence,∆εg , can be exactly recovered once these polynomial
coefficients of PK−1 (ξ

n
N ) ,QK (ξnN ) are known.

Sieve #2: Bandlimited Projection. We do not require exact ban-
dlimitedness, rather desire energy concentration in the low-pass re-
gion. We do so by implementing circular convolution,

gΩ [n] = (g ∗ ψΩ) [n] (Bandlimited Projection) (8)

where ψΩ [n] ∈ BΩ is an ideal low-pass filter. Also since, gΩ ∈
BΩ ⇒ ∆gΩ ∈ BΩ, we apply (8) to ∆g to ensure bandlimitedness.
Stopping Criterion. Perturbations make it challenging to propose
a general noise model for e [n] in (2). This motivates us to move
our attention from noise statistics to deterministic uncertainty in the
data. Hence, we base our stopping criterion on a deterministic noise
margin—the “MSE budget” (cf. [10, 11]).
Iterative Signal Sieving Method. Combining the above ingredi-
ents, the modulo signal recovery can be formulated as the following
quadratic minimization problem

min
PK−1,QK

∆gΩ

N−1∑
n=0

∣∣∣∣∆y[n]−∆gΩ [n]− PK−1 (ξ
n
N )

QK (ξnN )

∣∣∣∣2 (9)

for which we opt to use a linear minimization strategy that leads to a
fast and efficient solution. In particular, we solve for,

min
P
[i]
K−1

,Q
[i]
K

∆gΩ

N−1∑
n=0

∣∣∣∣∣∆(gΩ − y) [n]Q[i]
K (ξnN )− P

[i]
K−1 (ξ

n
N )

Q
[i−1]
K (ξnN )

∣∣∣∣∣
2

. (10)

Solving the above quadratic minimization problem for Q[i]
K provides

a collection of candidates for QK (ξnN ), when i = 1 . . . imax, out of

1Of course, many other models (e.g. polynomials) can also be used in our
context. However, applying a parsimony principle, the Dirichlet kernel in (6)
is more robust and flexible, in terms of model sparsity and complexity.

Algorithm 1 Iterative Signal Sieving for Modulo Sampling
Input: Modulo Samples y[n] and Bandwidth Ω
1: Estimate: K = {card(I)| |∆y[i]| ⩾ λ, i ∈ I}.

Initialize ∆ε̃[0]g [n] = ∆y[n].
2: for i = 1 to imax do
3: Update the spike estimate ∆ε̃

[i]
g [n] ← ∆ε̃

[i−1]
g [n] by fitting

∆ε̃
[i−1]
g [n] with the polynomial fraction model in (11).

4: Obtain the BL estimate∆g̃[i−1]
Ω [n] = ∆y[n] + ∆ε̃

[i]
g [n].

5: Update the BL signal estimate∆g̃[i]Ω [n]← ∆g̃
[i−1]
Ω [n] by per-

forming low-pass filtering (8).
6: Check the MSE stopping criterion: if satisfied, stop the itera-

tion; otherwise, keep iterating.
7: end for
8: Obtain the g̃Ω[n] by applying the anti-difference operator∆−1.

Output: The recovered BL signal g̃Ω[n].

which we choose the one for which the MSE is the smallest. Note
that, our goal is not to minimize the MSE for (9), rather we as-
pire to find a valid solution that fits our noisy modulo data up to
an uncertainty characterized by the “RMSE budget” or RMSE =»

1
N

∑N−1
n=0 |e[n]|

2. In other words, we consider the modulo sig-
nal recovery to be successful as soon as the fitting error in (9) is no
larger than the RMSE budget. Next, in Sec. 4, we develop an efficient
implementation of this principle that follows an alternative strategy.

4. ITERATIVE SIGNAL SIEVING ALGORITHM

To implement the signal sieving principle, we solve the quadratic
minimization problem in (10). More specifically, the minimiza-
tion (10) can be decomposed as two sub-optimization problems as
illustrated below.

g(nT ) = y(nT ) + εg(nT )

∆y(nT )

∆ε̃
[i]
g [n]

∆

∆g̃
[i]
Ω [n]

∆−1

Given

Sieve 1Sieve 2

∑
k ckδ[n− nk]

Modulo Samples

Sub-problem: Spike Estimation. Update the estimate ∆ε̃
[i−1]
g =

(∆g̃
[i−1]
Ω −∆y) by performing model-fitting on∆ε̃[i−1]

g [n]. Denot-
ing by VM

N the N ×M inverse DFT matrix: VM
N = 1

N

[
ξnm
N

]
n,m

,
where n ∈ [0, N − 2],m ∈ [0,M − 2], the polynomials involved in
(9) can be expressed algebraically as

[
PK−1 (ξ

n
N )

]
n

= VK
Np and[

QK (ξnN )
]
n
= VK+1

N q, respectively, where p and q are the coeffi-
cients ofPK−1 (ξ

n
N ) andQK (ξnN ). LetR[i−1] be the inverseN×N

diagonal matrix with elements diag
Ä
VK+1

N q[i−1]
ä−1

. Then, given

an spike estimate∆ε̃[i]g [n], at iteration i, the sub minimization can be
reformulated as

{pi,qi} = argmin
p,q

∥∥∥A[i−1]q−B[i−1]p
∥∥∥2

(11)

whereA[i−1] = diag
(
∆ε̃

[i]
g

)
R[i−1]VK+1

N andB[i−1] = R[i−1]VK
N .

In order to ensure a unique solution qi to (11), we impose (q0)Hqi =
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Fig. 3. Hardware experiments. (a) Recovery with noisy modulo samples (15% noise, N = 334 samples with K = 32 folding instants).
(b) Recovery with a small sampling rate (N = 130 samples with K = 26 folding instants). (c) Recovery with spectral leakage: (c) is a
truncated version of (b) (N = 92 samples with K = 21 folding instants). This signal truncation yields significant spectral leakage which
leads to the failure of Fourier-domain partitioning algorithms. However, the proposed approach achieves an accurate reconstruction despite
noise contamination and spectral leakage. For (a)-(c), the signal dynamic range ismax |g(nT )| = 9.53λ.

1 with initialization q0. The number of spikes can be robustly esti-
mated by evaluating the significant jump of the finite difference of
the modulo samples: K = {card(I)| |∆y[i]| ⩾ λ, i ∈ I}.

Sub-problem: Bandlimited Projection. From the update ∆ε̃[i]g [n],
we obtain and update the bandlimited signal estimate,Ä
∆ε̃

[i−1]
Ω +∆y

ä
7→ ∆g̃

[i−1]
Ω −→ ψΩ

(8)−→ ∆g̃
[i]
Ω = ∆g̃

[i−1]
Ω ∗ ψΩ.

Stopping Criterion. We compute the reconstructed RMSE using
∆ε̃

[i]
g [n],∆g̃

[i]
Ω . Once it is smaller than or equal to the predefined

RMSE budget, the iterations stop; otherwise, go to Step 1 and keep
iterating2. Fig. 2 describes the visual output of the signal sieving
process. An algorithmic implementation is provided in Algorithm. 1.

5. EXPERIMENTAL VALIDATION

In the noiseless scenario, the signal recovery is exact. In order to
reveal the interplay between all possible ingredients, e.g. number of
samples or spikes, RMSE budget, etc., we conduct the following sim-
ulation. We keep the number of spikes fixed (K = 20) and ob-
serve the reconstructed RMSE versus different number of samples
and RMSE budget, as shown in Fig. 4. Clearly, with a small amount
of samples, our algorithm achieves an accurate signal recovery that
fits the modulo data within the RMSE budget. Larger the RMSE bud-
get (i.e. stronger the noise), higher is the number of samples needed.

Then, we move to the hardware experiments based on the US-
ADC to validate the performance of the proposed algorithm. A con-
tinuous signal is generated by a TTi TG5011 waveform generator. Its
output is then split into 2 channels fed to the DSO-X 3024A oscilloscope
with inbuilt ADC, yielding the modulo samples y[n] and the conven-
tional samples (our ground truth). The ADC threshold λ = 2.01 and
the specific experimental settings are given in the table,

2This RMSE can be obtained by pre-calibration, or from the instrument
parameters. If the RMSE budget is unknown, we simply run the algorithm
of a fixed number of iterations and choose the reconstruction that yields the
minimum RMSE. We refer the interested readers to [10] for more details.

150 200 250 300 350 400
No. of Samples

-45

-40

-35

-30

-25

-20
R

M
SE

 (d
B)

No. of Folds (K=20) vs. Sample Size (N) Trade-off with different Noise Levels.

Fig. 4. Sampling Evaluation: Recovery with different number of
samples and RMSE budget. The number of folding instants is fixed
K = 20 and the dynamic rangemax |g(nT )| is 7λ.

T (ms) Run time (s) ⌈ Ω
2π
N⌉ RMSE Budget N K Recovered RMSE

Fig. 3 (a) 0.30 1.79 25 0.1279 334 32 0.0930
Fig. 3 (b) 0.60 1.04 27 0.1883 130 26 0.1869
Fig. 3 (c) 0.30 0.92 20 0.2344 92 21 0.2052

Using Step 1) of Algorithm. 1, the number of spikes is accurately
estimated which is consistent with the sparsity of ∆(gΩ[n]− y[n]).
The signal reconstructions of gΩ[n], εg[n] are presented in Fig.3,
for which the resulting RMSEs are all below the budgets. The dy-
namic range max |g(nT )| in Fig.3 (a)-(c) is 9.53λ. In all cases, the
proposed algorithm achieves robust and accurate recovery, which
demonstrates its performance in a realistic setting. We do not com-
pare our method to FP-Alg-like methods [5, 9] as they use FFT-
domain processing which fails in the presence of spectral leakage.

6. CONCLUSION

In this paper, we presented a novel algorithm “ITER-SIS” for modulo
signal recovery. Hardware experiments have shown that ITER-SIS is
robust to noise and achieves reconstruction with low-sampling-rate.
Since ITER-SIS is FFT-free, it is particularly of interest where spec-
tral leakage is an issue. Proving convergence and recovery guarantees
for ITER-SIS remain interesting future research directions.
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