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ABSTRACT
To achieve HighDynamic Range (HDR) sensing, the Unlimited Sam-
pling Framework (USF) was recently proposed. In the USF, modulo
encoding of the continuous-time input signal prevents the analog-to-
digital converter (ADC) from saturation. For recovering the HDR
signal from folded samples, reconstruction algorithms are utilized.
Current USF pipeline is highly focused on bandlimited signal classes
and requires considerable oversampling. In contrast, in this paper, we
consider non-bandlimited signals, in particular, sparse inputs with
finite-rate-of-innovation (FRI). By devising a novel, dual-channel
modulo sampling architecture we show that, surprisingly, sparse
signal recovery from modulo samples can be performed independent
of the sampling rate. We validate the effectivity of our sampling
scheme and show that perfect signal reconstruction is achieved up to
machine precision.

Index Terms— ADC, modulo, non-linear reconstruction, sam-
pling, sparse recovery, super-resolution.

1. INTRODUCTION

Digital acquisition of signals is the stepping stone for a wide variety
of modern world applications. Guided by Shannon-Nyquist sampling
framework, a point-wise signal acquisition scheme is implemented
using the so-called analog-to-digital convertor (ADC). Shannon sam-
pling theory is mature technology and has been thoroughly studied
for decades [1], covering both the theoretical underpinnings of sam-
pling framework as well as the algorithmic strategies to overcome
distortions arising in practice, e.g. system noise and quantization.
Beyond these distortions, a fundamental bottleneck that inevitably
arises in practice is the dynamic range (DR) of the ADC—samples
suffer from signal clipping or saturation when the DR of the ADC
and signal of interest are not matched. To overcome this fundamen-
tal barrier, recently, the Unlimited Sampling Framework (USF) [2–7]
was introduced as an alternative solution to Shannon-Nyquist sam-
pling framework. The USF allows for a High Dynamic Range (HDR)
capture, e.g. as shown in [5], signals as large as 25× the ADC thresh-
old can be recovered in practice. Furthermore, for a given bit-budget,
since the range of modulo operator is much lower than the ambient,
HDR signal, modulo ADCs produce samples with higher quantiza-
tion resolution [3]. The implication being, in applications such as
Radars [8], one can achieve higher signal sensitivity due to lower
quantization noise in modulo ADCs.

In contrast to the conventional paradigm—capture first, process
later—the USF utilizes a joint design of hardware and algorithms
to bridge the gap between the theory and practical implementation

The work of the authors is supported by the UK Research and Innovation
council’s FLF Program “Sensing Beyond Barriers” (MRC Fellowship award
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of traditional sampling framework. Traditionally, the hardware and
reconstruction algorithms are disentangled from each other. While
in the USF, a modulo non-linearity defined by

Mλ : g 7→ 2λ

([[
g

2λ
+

1

2

]]
− 1

2

)
, [[g]]

def
= g − bgc , λ ∈ R+

(1)
where bgc = sup {k ∈ Z| k 6 g} (floor function), is embedded in
the sampling pipeline before capturing point-wise samples. In do-
ing so, an arbitrary HDR continuous-time signal is folded back into
the ADC’s dynamic range [−λ, λ], thus the clipping problem can
be eliminated. Together with a point-wise sampling, this constructs
the modulo ADC architecture, as shown in Fig. 1. By using novel
recovery algorithms, the samples arising from Mλ(·) operator can
be unfolded; this enables recovery of HDR signal from its low dy-
namic range samples. The effectiveness of USF on hardware experi-
ments has been demonstrated via modulo ADCs in [5]. Applications
of the USF include, sensor array processing [9]; sparse signal re-
construction [6, 10]; HDR imaging [11]; tomography [12], massive
MIMO [13], etc.

Motivation. Current works on the USF are predominantly fo-
cused on bandlimited/smooth signal classes. Apart from the above-
mentioned papers, we refer to the following works [7,14–18] that de-
velop recovery algorithms for bandlimited functions. Alternatively,
an interesting class of signals is that of finite-rate-of-innovation or
FRI signals [19–21]. Due to the widespread applications of sparse
and FRI signals, modulo sampling of such signal classes has been
discussed in [10]. Recently, a robust algorithm with its hardware val-
idation in the context of time-of-flight imaging was presented in [6].
These initial works convey the promise of sparse super-resolution
problem but are currently limited by,

1) Bandlimited Sampling Kernels. In practice, kernels may be
time-localized [20] and such functions are optimally modeled by
time-limited pulses.

2) Sampling-Rate. Modulo folding of signals typically requires a
sampling rate that is higher than the rate-of-innovation. While
this is expected because it is natural to trade-off dynamic range
with oversampling, in some cases e.g. [10], the sampling rate is
inversely proportional to the modulo threshold.

These two aspects motivate new USF architectures that can han-
dle time-limited kernels and algorithms that can reconstruct signals
acquired at their rate-of-innovation.

Contributions. The main contributions of our work are as follows.

1. We propose a novel acquisition pipeline which relies on a dual-
channel sampling architecture. Surprisingly, this simple acquisi-
tion pipeline results in a sampling scheme which is free of any
sampling rate requirement.IC
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Fig. 1. Flowchart of the Unlimited Sampling scheme of FRI signals.

2. Our sampling scheme can handle time–limited or compactly sup-
ported kernels. This is very different from previous works which
were based on bandlimited kernels [6, 10].

3. Our recovery method is theoretically guaranteed and leads to per-
fect signal reconstruction. This enables super-resolution of signal
parameters from modulo samples (see Fig. 4).

Related Research Efforts and Context. Our previous papers [6,10]
formulated the sparse or FRI signal recovery problem from mod-
ulo samples but these works were restricted to bandlimited sampling
kernels and the sampling rate was implicitly linked to the dynamic
range of the signal (relative to the modulo ADC). Apart from these
works, compressive sensing from modulo samples has been studied
in [22–24] but these methods do not apply to our problem setup.

2. SAMPLING PIPELINE AND PROBLEM FORMULATION

In this paper, we focus on the modulo sampling strategy for non-
bandlimited signal classes, in particular, FRI signals [19]. Our novel
sampling pipeline allows for a tighter signal model and enables per-
fect recovery for non-bandlimited signals. Fig. 1 depicts the modulo
sampling process of sparse signals: a stream of Diracs sK(t)

sK(t) =
∑K−1

k=0
akδ(t− tk) (2)

is filtered with a filter ψ(t) of compact support (ψ(t) = 0, ∀ |t| >
P ), which yields the output signal

g(t) = (sK ∗ ψ)(t) =
∑K−1

k=0
akψ(t− tk). (3)

Such signals are called signals with finite-rate-of-innovation since
they are completely described by a finite number of free parameters
per unit of time.

In the USF, modulo non-linearity is applied in the continuous
domain; i.e. g(t) is folded via the centered modulo operation in (1).
This results in the folded signal Mλ(g(t)) (see Fig. 1) which is then
uniformly sampled, leading to a stream of modulo samples

y[n] = Mλ

(
g(nT )

)
= Mλ

(∑K−1

k=0
akψ(nT − tk)

)
(4)

where T is the sampling step and the filterψ(t) is of compact support
P (e.g. splines).

3. UNLIMITED SAMPLING OF SPARSE SIGNALS

As the input signal g(t) is clearly non-bandlimited, recovery ap-
proaches developed to modulo sampling, e.g. Fourier domain parti-
tioning [6] and high-order finite difference [2, 3], cannot be applied
in our context. This motivates the development of new methods.

Modular Decomposition Representation. Our starting point is the
modular decomposition property [3] which allows us to write,

g = Mλ(g) + εg, εg(t) =
∑L−1

l=0
cl1Dl (t) (5)

where cl ∈ 2λZ, εg(t) is the residue function and 1D is the indicator
function on domain D with ∪· lDl = R. Denoting by y the finite
difference of y, we have

y[n] = g[n]−
∑L−1

l=0
clδ[n− nl], n = 0, · · · , N − 2

where {nl}L−1
l=0 are the unknown folding instants—the locations

where the modulo non-linearity yields. The triggering rate of nl
depends on the Mλ–ADC threshold λ. For a certain dynamic range,
smaller the λ, higher is the folding rate and larger is the number of
spikes in (3). Obviously, both g[n] and εg[n] are non-bandlimited,
resulting in aliasing in the Fourier domain. In order to separate the
residue εg[n] out of y[n], we propose a new recovery scheme.

Modulo Sparse Recovery Via Residue Separation. The key idea of
recovering g[n] from y[n] is that the amplitudes of spikes {cl}L−1

l=0

are multiple times of the Mλ–ADC threshold, i.e. cl ∈ 2λZ, l =
0, 1, · · ·L− 1. Before presenting the sampling theorem, we first in-
troduce the following lemma:

Lemma 1. Assume a sparse signal g(t) sampled by two modulo
ADCs with different thresholds λ1 and λ2, which gives rise to mod-
ulo samples yλ1 [n], yλ2 [n]. Then, the sparse samples g[n] can be
exactly recovered if λ1/λ2 is irrational.

Proof. From (3), we have that

y
λ1

[n] = g[n]− εgλ1
[n], y

λ2
[n] = g[n]− εgλ2

[n] (6)

By computing the difference between y
λ1

[n] and y
λ2

[n], we obtain

rλ1,2
= εgλ2

[n]− εgλ1
[n] =

∑L1+L2−1

l=0
clδ[n− nl] (7)
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Fig. 2. Illustration of polynomial reproducing kernel. ψ(t) is a cubic spline.

which is a sparse signal with weights cl = 2λ2pl−2λ1ql, {pl, ql} ∈
Z2. It suffices to show that, the mapping between cl and {pl, ql} is a
injection, i.e.

2λ2pl − 2λ1ql = 2λ2pl′ − 2λ1ql′ ⇐⇒ pl = pl′ , ql = ql′

which follows from the fact that @ {pl, ql} ∈ Z2, s./t. λ1/λ2 = p/q.

Hence, {pl, ql} can be uniquely recovered from cl, which thereby
leads to a perfect reconstruction of εgλ1

[n] and εgλ2
[n]. By applying

anti-difference operator ∆−1, the sparse samples g[n] can then be
perfectly recovered. This completes the proof of Lemma. 1. �

We emphasize that the dual-channel modulo sampling in Lemma. 1
results in an exact recovery of g[n], which can be expressed as a sum
of shifted kernels ψ. Retrieving the parameters {ak, tk} from g[n]
essentially boils down to the sparse recovery using reproduction of
polynomials [20], which leads to the following sampling theorem:

Theorem 1. Let g(t) = (sK ∗ ψ)(t) as defined in (3) where
ψ(t) is a compactly supported polynomial reproducing kernel. Let
yλm [n],m = 1, 2 be the modulo samples of g(t) with distinct
folding thresholds, λ1 6= λ2. Provided that λ1/λ2 is irrational,
N > P > 2K guarantees a perfect reconstruction of g(t).

Proof. We present the proof of this theorem by constructing the so-
lution to the problem. Let rλ1,2

= y
λ1
− y

λ2
denote the difference

between y
λ1

and y
λ2
, which is a sum of at most L1 + L2 spikes as

in (7). Its amplitudes are given by cl = 2λ2pl − 2λ1ql. Provided
that cl 6= 0, {pl, ql} can be exactly retrieved whenever λ1/λ2 is ir-
rational. Hence, g can be recovered by removing the reconstructed
residue using pl, ql from themodulo samples y

λ1
, y
λ2
. Furthermore,

by applying the anti-difference operator, g can be recovered. Next,
note that the compactly-supported ψ satisfies,

Cmn ©∗ T ψ (t) = tm, 0 6 m 6 P − 1 (8)

where an©∗ T ψ (t) =
∑N−1
n=0 anψ (t− nT ) denotes semi-discrete

convolution, ψ (t) = ψ (−t). The polynomial reproduction property
is visually illustrated in Fig. 2. Linearly combining gwith coefficients
Cmn in (8), we obtain the new moment sequence:

µm =

N−1∑
n=0

Cmn g[n] =

K−1∑
k=0

ak
(
Cmn ©∗ T ψ

)
(tk)

(8)
=

K−1∑
k=0

akt
m
k .

(9)
Let hm withm = 0, 1, · · · ,K be the filter with z-transform ĥ(z) =∑K
m=0 hmz

−m = ΠK−1
k=0 (1 − tkz−1), that is, its roots correspond

to the Dirac locations tk to be found. Then, it follows that hm anni-
hilates the observed sequence µm:

hm ∗ µm =
∑K

i=0
hiµm−i =

∑K−1

k=0
akt

m
k

∑K

i=0
hit
−i
k . (10)

Let T(µm) denote the Toeplitz matrix. According to (10), h ∈
kerT(µm) or T(µm)h = 0 whenever T(µm) is a rank-deficient.
By solving the above linear system of equations, we find the filter co-
efficients hm and then retrieve tk by computing the roots of polyno-
mial ĥ(z). It remains to estimate the Dirac amplitudes ak which can
be determined via least-squares fitting (9). Notice that the problem
can be solved when there are at least as many equations as unknowns,
implying that P ≥ 2K. This completes the proof. �

Theorem 1 shows that spike recovery is related to its rate-of-
innovation and is independent of the sampling step T . This enables
sampling and reconstruction of sK(t) with critical sampling rate—
the rate-of-innovation as shown in Sec. 6. An efficient implementa-
tion of our recovery method is outlined in Sec. 5.

4. MODULO SAMPLINGWITH PRACTICAL FILTER

In this section, we show that the dual-channel sampling scheme also
applies to arbitrary time-limited filters, mimicking what happens in
practice. To do so, we express an arbitrary kernel, say φ(t), as a
linear combination of time-limited sampling filter,

φ(t) =
∑Q−1

i=0
αiψ(t− qi) (11)

with {qi, αi}Q−1
i=0 known. Then, we have the following corollary:

Corollary 1. Let g(t) = (sK ∗ φ)(t) =
∑K−1
k=0 akφ(t− tk) where

φ(t) =
∑Q−1
i=0 αiψ(t − qi) (as in (11)). Given N > supp (φ) >

2KQ, sK(t) can be recovered from its dual-channel modulo sam-
ples.
Proof. In view of Cmn ©∗ T ψ (t) = tm (8), the arbitrary kernel φ
also reproduces polynomials,

Cmn ©∗ T φ (t) =
∑Q−1

i=0
αi(t+ qi)

m. (12)

The implication being, computing moments with Cmn , results in,

µφm =

N−1∑
n=0

Cmn g[n] =

K−1∑
k=0

ak

Q−1∑
i=0

αi(tk + qi)
m (13)

which can be annihilated using the annihilation filter method de-
scribed in Theorem 1. This results in the recovery of {akαi, tk+qi}.
Moreover, with {αi, qi} known, it suffices to show that
K−1∑
k=0

ak

Q−1∑
i=0

αie
 2πm
N

(tk+qi) =

K−1∑
k=0

ake
2πmtk
N

Q−1∑
i=0

αie
2πmqi
N

(14)
where {ak, tk}K−1

k=0 are the unknown parameters. The problem even-
tually amounts to retrieving frequencies from a sum of sinusoids,
which again can be solved using the annihilation filter method in
(10). This results in a perfect reconstruction of sK(t) from the dual-
channel modulo samples. �
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g(t)

Fig. 3. Sparse Signal Recovery. Input g(t) is composed of K = 3 spikes, s3(t), filtered with kernel ψ(t) (B-spline with P = 7), leading to
‖g‖∞ = 10. The signal is acquired via our dual-channel modulo architecture with folding thresholds λ1 = 0.20 and λ2 = 0.14, respectively.
The dynamic range of each channel is, 50.0λ1, 70.7λ2 and hence the modulo samples seem to have negligible amplitudes. The modulo folding
results in L1 = L2 = 10, per channel. Given ψ, with N = 19 samples, we reconstruct s3(t), with MSE = 1.19× 10−16.

-6 -4 -2 0 2 4 6 8
Time (sec.)

0

5

10

Am
pl

itu
de

 (a
.u

.)

Signal Recovery
g(t)
sK(t)

Fig. 4. Super-Resolution. We consider the case of closely separated
spikes. With N = 19 samples, L1 = L2 = 7 folding instants we
recover sk with MSE = 5.74× 10−15.

5. ALGORITHMIC SETTING

We develop the annihilation filter based procedure to reconstruct the
sparse signal from dual-channel modulo samples. Below, we list the
steps of our recovery method.

1. Given dual-channel modulo samples yλ1 [n], yλ2 [n], we compute
the difference rλ1,2

in (7) using (6). As mentioned earlier, rλ1,2

is a sum of spikes, for which its amplitudes map to a unique so-
lution (pl, ql). This follows from the assumption that λ1/λ2 is
irrational. Hence, εgλ1

[n], εgλ2
[n] can be exactly recovered, and

thereby g[n] is reconstructed.

2. With the polynomial reproducing kernel ψ, we compute the mo-
ments µm defined in (9). We obtain the annihilation filter hm by
solving the linear system of equations: T(µm)h = 0. The Dirac
locations can be uniquely retrieved from the roots of the filter co-
efficients. The amplitudes are then obtained by performing fitting
on the moment expression in (9).

Fig. 1 describes the signal reconstruction process. An algorithmic
implementation is provided in Algorithm. 1.

6. NUMERICAL EXPERIMENTS

The proposed signal recovery method in Algorithm. 1 performs up to
machine precision with computer simulations. To demonstrate this,
we setup the following tests as shown in Fig. 3 and Fig. 4: g(t) is
composed of K = 3 Diracs with randomly generated (normal dis-
tribution) locations and amplitudes. The sampling kernel ψ is a B-
spline with P = 7. The dynamic range ‖g‖∞ in Fig. 3 and Fig. 4 is

Algorithm 1 Sparse Signal Recovery for Modulo Sampling
Input: Dual-channel Modulo Samples yλ1 [n], yλ2 [n]
1: Compute the residue difference rλ1,2

.
2: for i = 0 to L1 + L2 − 1 do
3: Find the integers {pl, ql} that satisfies that cl = 2λ2pl −

2λ1ql, (pl, ql) ∈ Z2.
4: end for
5: Recover the residue εgλ1

[n], εgλ2
[n]. The sparse samples g[n] can

be reconstructed by applying the anti-difference operator ∆−1.
6: Compute the moments µm and obtain the annihilation filter hm

by solving (10).
7: Compute the locations tk by finding the roots of ĥ(z) and am-

plitudes from least-square fitting on (9).
Output: The reconstructed sparse signal g(t).

50.0λ1, 70.7λ2 and 51.1λ1, 71.2λ2, respectively. We use N = 19
samples for each numerical experiments.

We use the mean-squared error (MSE) between the filtered sig-
nal {g(nT )}N−1

n=0 and its reconstruction to evaluate the algorithm
performance. In both examples, the high dynamic range leads to
L1 = L2 = 10 in Fig. 3; L1 = L2 = 7 in Fig. 4. Despite the
high dynamic range, the proposed algorithm achieves an accurate re-
covery up to machine precision (MSE = 1.19× 10−16) in Fig. 3.

In order to demonstrate the super-resolution capability, we con-
sider the case of closely-located spikes,

tk =
[
−1.62 0.71 0.81

]>
.

In particular, resolving t1 and t2 can be challenging with conven-
tional (non-modulo) samples, the challenge is further intensified with
modulo sampling due to the non-linear nature of acquisition. Despite
this, our algorithm can resolve the spikes up to machine precision.

7. CONCLUSION

In this paper, we propose a novel, dual-channel sampling pipeline
which enables a perfect recovery of time-limited signals. Our ap-
proach can handle non-bandlimited functions and the construction of
the acquisition architecture allows for a recovery principle that does
not depend on sampling rate. Our work also considers that super-
resolution scenario of closely spaced spikes. Developing reconstruc-
tion algorithms that can tackle quantization and system noise remains
an integral part of our future work.
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