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Vector-FRI Recovery of Multi-Sensor Measurements
Ruiming Guo , Yongfei Li , Thierry Blu , Fellow, IEEE, and Hangfang Zhao

Abstract—Thanks to lowering costs, sensors of all kinds have in-
creasingly been used in a wide variety of disciplines and fields, facil-
itating the rapid development of new technologies and applications.
The information of interest (e.g. source location, refractive index,
etc.) gets encoded in the measured sensor data, and the key problem
is then to decode this information from the sensor measurements. In
many cases, sensor data exhibit sparse features—“innovations”—
that typically take the form of a finite sum of sinusoids. In practice,
the robust retrieval of such encoded information from multi-sensors
data (array or network) is difficult due to the non-uniformity of
instrument precision and noise (i.e. different across sensors). This
motivates the development of a joint sparse (“vector Finite Rate of
Innovation”) recovery strategy for multi-sensor data: by fitting the
data to a joint parametric model, an accurate sparse recovery can
be achieved, even if the noise of the sensors is non-homogenous and
correlated. Although developed for one-dimensional sensor data,
we show that our method is easily extended to multi-dimensional
sensor measurements, e.g. direction-of-arrival data of 2D planar
array and interference fringes of underwater acoustics, which
provides a generic solution to these applications. A very robust
and efficient algorithm is proposed, which we validate in various
conditions (simulations, multiple types of real data).

Index Terms—Vector finite-rate-of-innovation (FRI), multi-
sensor measurements, data fusion, multi-dimensional sparse
recovery, high-resolution, model-fitting.

I. INTRODUCTION

Sparse Signal Recovery — Nowadays, the wide availability of
various cheap sensors (inertia, velocity, magnetic field, acoustic,
pressure, temperature, etc.) makes it possible to develop new
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technologies and applications. The sensors are deployed in
many places, and provide large amounts of data of all kinds.
For example, the sensors installed on parcels enable real-time
tracking in express delivery [1]; the sonar systems fitted on ships
help identify the underwater sediment composition by analyzing
the reflected echo [2].

The information of interest (e.g. direction of the source,
properties of the medium/material) gets encoded in the sen-
sor data received, and the inverse problem is then to decode
this physical information from the acquired sensor data. The
key observation is that, in many cases, the physical properties
measured are characterized by a few parameters (innovations),
which suggests exploiting the principle of sparsity as a recon-
struction constraint. Fig. 1 shows several practical application
examples. More specifically, these signals have few degrees of
freedom (i.e., “innovations”) represented by a sparse parametric
model [3], [4], [5]. Usually, these sparse signals are or can be
transformed into a finite sum of sinusoids, hence converting
the sparse signal recovery into frequency estimation [6], [7],
[8], [9], [10], [11], [12]. From a technical point of view, this
becomes a classical high-resolution frequency estimation prob-
lem, which is encountered in many applications [13], [14], [15],
[16], [17].

Joint Frequency Estimation — Although high-resolution fre-
quency estimation techniques have achieved great success in
some application scenarios, there are still unresolved issues in
practice. A first challenge is joint frequency retrieval from multi-
sensor measurements. When measuring a physical phenomenon,
two possible cases occur frequently in real data acquisition:

1) sensors are of the same type, but with different config-
urations. Usually, real sensors deployed in an array or
system have a different measurement precision and noise
level [18], [19], [20], [21].

2) sensors are of distinct types. For example, a person’s
respiratory rate can be evaluated by fusing the data mea-
sured from an accelerometer, a pulse oximeter, and a
sphygmomanometer [22], [23], [24]; in structural health
monitoring, the natural frequency of the bridge/building
can be estimated by exploiting jointly data from various
sensors: accelerometer, ultrasonic sensor, acoustic emis-
sion sensor, eddy current sensor, laser Doppler vibrometer
(LDVs), and strain gauge. [25], [26], [27], [28], [29].

In these circumstances, multiple sensor measurements which
intrinsically share the same sinusoidal components are ac-
quired. In practice, the most common operation is to directly
or indirectly average the estimation results obtained from each
individual sensor data, but this is not robust enough, nor
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Fig. 1. A wide range of practical applications involving the acquisition of reconstruction of sparse signals.

sample-efficient. As a consequence, the final resolution pro-
vided by these frequency estimation techniques is unsatisfac-
tory, as it largely limits the precision and reliability in many
cases [30], [31], [32].

Another challenge to joint frequency retrieval is the noise
that distorts the sensor measurements. It is usually assumed
to be additive white Gaussian noise (i.e. AWGN) or indepen-
dent and identically distributed white noise in most of the
existing frequency estimation approaches (e.g. MUSIC [33],
[34], ESPRIT [35], [36], matrix pencil [37], [38], compressive
sensing [39], [40], etc.). However, this noise assumption is at
odds with reality, where the actual measurement noise is very
often correlated and colored [41], [42], [43], [44]. This model
mismatch restricts the scope of applications and results in limited
resolution improvement brought by frequency estimation.

Finally, a significant difficulty in joint frequency estimation
is the extension to multi-dimensional sensor data, such as 2D
seismic interferograms [45] and 3D holograms [46]. The lack
of general joint estimation aproaches has led to the design of
specific ad hoc multidimensional frequency estimation tech-
niques in different disciplines. Unfortunately, the sensor data
are not optimally utilized for joint frequency retrieval, leading
to limited resolution and precision on the final reconstruction
result [47], [48].

Our contribution — In this paper, we propose an efficient and
robust grid-less algorithm that is able to retrieve the common
frequencies of data acquired by multiple sensors: Vector FRI
(“Finite Rate of Innovation”). Instead of specifying a stochas-
tic noise model, we merely opt for a single quantity—“MSE
budget”—to describe arbitrary data corruption, (e.g. determin-
istic interference, non-white, correlated, non-stationary, etc.).
This allows us to accurately retrieve the information from diverse
multi-sensor measurements contaminated by arbitrary noise.

Our processing consists in performing the inverse DFT of the
multi-sensor sinusoidal measurements to obtain sparse signals
that are then fitted to a finite sum of Dirichlet sinc kernels.
The key idea is that any such sum that fits the data as well or
better than some known mean-square error—a predefined “MSE
budget”—is a valid solution to our problem; i.e., we do not try
to find the best fit. Hence, this processing does not make any
statistical assumption about noise, but for its MSE to be no larger
than the MSE budget: our fitted parametric model is as close
(or better) to the noisy data as the (hypothetical) ground-truth
is. Moreover, the MSE criterion also provides a natural way
of determining the order of the model: the smallest number of

innovations/sinusoids for which the fitting MSE is still not larger
than the MSE budget.

We demonstrate that our Vector-FRI algorithm can robustly
process different types of sensor data, which we validate in
various conditions (see Section IV). Moreover, our algorithm
can be directly generalized to multi-dimensional sensor mea-
surements, enjoying efficient implementation, strong robustness
and high accuracy (see Section V). Suitable application areas
range from 3D point source localization, direction-of-arrival
estimation for 3D sensor array, image enhancement for fluores-
cence microscopy, to phase recovery from interference fringes,
which is likely to help achieve high-quality signal recovery (i.e.
super-resolution), and extensive adaptability to real data and
hardware.

The contribution of this work can be summarized as follows:
1) An efficient and robust grid-less algorithm for joint sparse

recovery of diverse multi-sensor measurements in the
presence of arbitrary noise (see theory in Section II,
algorithmics in Section III, and validation with simulated
data in Section IV).

2) An extension to multi-dimensional data (see Section IV-C
and Figures in the supplementary materials).

3) A validation with real data from two acoustic applications
(see Section V).

II. VECTOR-FRI APPROXIMATION

In many application scenarios, data are measured and col-
lected in a duration of time using sensor network or arrays. The
goal is to jointly exploit these multi-sensor measurements and
retrieve the encoded physical information of interest (e.g. direc-
tion of the source, properties of the medium/material, refractive
index, etc.).

A. Signal Model

Consider an array of L sensors or network nodes, which
provides a collection of 1D sinusoidal signals with the same
frequencies; i.e. vector signals

sn,l =

K∑
k=1

ck,le
−jukn,

n = 0, 1, . . . , N − 1 and l = 0, 1, . . . , L− 1 (1)
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Fig. 2. Multiple sensor measurements are made up of K different complex exponentials (+noise) of the same frequencies across sensors, but different (complex)
amplitudes. The goal of this paper is to retrieve these frequencies and the amplitudes of the sinusoids for each sensor.

wheren is the time index,uk is the frequency of the k-th sinusoid
(common to all the L sensors), and ck,l is the (complex-valued)
amplitude of the k-th sinusoid in the l-th sensor signal.

In noisy conditions, the sensor measurements yn,l can be
expressed as

yn,l = sn,l + wn,l (2)

where wn,l denotes the noise on l-th sensor. In practice, high-
resolution techniques are required as the number of samples
N is limited and FFT-based techniques cannot resolve closely-
located frequencies [40], [41], [48].

Note that, in various applications, we cannot usually assume
that the measurement noise is white and uncorrelated between
channels. However, some knowledge of the time-domain MSE
of wn,l for each sensor should, in principle, be available (see
Section II-C). A visual depiction of the problem is shown in
Fig. 2.

We first briefly introduce the FRI signal model on a single
sensor measurement sn,l: the key idea is that the inverse Discrete
Fourier Transform (DFT) of a sum of K sinusoids is a sum
of Dirichlet sinc kernels which can, eventually, be expressed
in the form of a ratio of two polynomials in z = ej2πm/N

[49], [50], [51], [8]

1

N

N−1∑
n=0

sn,l z
n =

PK−1,l(z)

QK(z)
(3)

where PK−1,l and QK are polynomials of degree K − 1 and
K, respectively. In fact, QK corresponds to an annihilation fil-
ter [52], [53], the zeros of which uniquely define the frequencies
uk of the sensor signal [49].

Due to Parseval’s identity, we can fit the IDFT, xm,l, of the
sensor measurements, yn,l, with the trigonometric fraction (3),
and still be ensured that we are equivalently fitting sensor data

with a sum of complex exponentials (1). Consequently, FRI
approximation essentially boils down to solving the following
minimization problem [49], [50]

min
QK ,PK−1,l

N−1∑
m=0

∣∣∣∣∣xm,l −
PK−1,l

(
ej2πm/N

)
QK

(
ej2πm/N

)
∣∣∣∣∣
2

(4)

for each sensor separately. This, however, leads to as many
groups of K frequencies as there are sensors: simply averaging
them would not be accurate, nor robust enough. This motivates
us to develop a joint FRI recovery model for multi-sensor
measurements (i.e. vector signals).

B. Vector-FRI Approximation

Notice that, the denominator QK of the fraction (3) is un-
changed across all sensor measurements, because the frequen-
cies uk are the same for all the sensors. Therefore, we formulate
the joint fitting problem for multi-sensor measurements as

min
QK ,PK−1,l

L−1∑
l=0

N−1∑
m=0

∣∣∣∣∣xm,l −
PK−1,l

(
e2jπm/N

)
QK

(
e2jπm/N

)
∣∣∣∣∣
2

(5)

where the polynomial QK in the denominator is the same for
all the sensors. The numerators PK−1,l, on the other hand,
differ from sensor to sensor and hence, convey the diversity
and richness of the sensor measurements. Notice that, as soon
as QK is known, the numerators PK−1,l are found exactly by
solving a linear system of equations. Hence, (5) can be seen as
an optimization problem on QK only.

To find a good approximation of the solution of (5), we adopt
the same strategy as in [49]; i.e., we construct several candidates
for the denominator QK , and select the one that decreases most
the MSE with the multi-sensor data: as soon as the fitting error
is less than a predefined MSE budget, the approximate solution
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found is already sufficiently good in practice. More specifically,
these candidates are found iteratively as the solution of a linear
system of equations that solve the optimization problem

min
Q,Pl

L−1∑
l=0

N−1∑
m=0

∣∣∣∣∣xm,lQ
(
e2jπm/N

)− Pl

(
e2jπm/N

)
Qi−1

K

(
e2jπm/N

)
∣∣∣∣∣
2

(6)

where i = 1, 2, . . . , imax. Although similar in some aspects to
the Sanathanan-Koerner [54] or Steiglitz-McBride [55] algo-
rithms, our model-fitting algorithm has two important differ-
ences: firstly, we approach the problem in terms of fitting using
an MSE budget. Hence, instead of looking for convergence, we
stop the algorithm once the MSE budget is satisfied. Secondly,
we perform exact model-fitting in the “sparse” domain (i.e.
“frequency” domain), whereas the Steiglitz-McBride algorithm
is developed and implemented in the “sinusoid” domain, using
boundary conditions (typically, zero-padding) and hypotheses
(i.e. causality that are inappropriate for our problem). This makes
the frequency estimation obtained by using Steiglitz-McBride
algorithm unreliable [56]. Changing initialization of these it-
erations provides more candidates. In the vast majority of the
cases, 5 random initializations and imax = 10 are sufficient to
obtain a solution that satisfies the stopping criterion (10) (see
Section III-A for more details).

Having estimated the polynomials QK , PK−1,l, the frequen-
cies uk can be obtained by computing the zeros, zk, of the
denominator

uk = Im
(
log(zk)

)
(7)

and the associated amplitudes can be calculated by

ck,l = − Nz−1
k PK−1,l (zk)(

1− z−N
k

)
Q′

K (zk)
(8)

for each sensor l = 0, 1, . . . , L− 1.

C. Vector MSE Criterion

In practical applications, the actual measurement noise is
likely to be correlated (sensor-wise) and colored [41], [42], [43].
This makes it difficult to propose a general noise model suitable
for most situations. In fact, the most reliable information that
we have in practice is the noise margin

σ2
l =

1

N

N−1∑
n=0

|wn,l|2, l = 0, . . . , L− 1 (9)

which can be obtained by pre-calibration, or from the instrument
parameters, or running the algorithm of a fixed number of
iterations and initializations and choosing the reconstruction
that yields the minimum MSE. This motivates us to move
our attention from a statistical noise model to a deterministic
uncertainty of the sensor data. In other words, we only consider
the deterministic noise margin (“MSE budget”) of our sensor
data without imposing further assumptions. Hence, we expect
that the accurate retrieval of the information conveyed by the
multi-sensor signal is made possible essentially thanks to the
very strong constraints of the parametric model.

Fig. 3. Performance comparison (additive white Gaussian noise, averages over
5000 random realizations) in terms of the Cram é r-Rao lower bounds (CRLB).
(a) K = 1 sinusoid, N = 11 samples and L = 3 sensors. (b) K = 4 sinusoids,
N = 21 samples and L = 3 sensors. Here, we compute the mean of the Cram é
r-Rao variances of the frequencies and compare it with the mean of the estimation
variances of each algorithm.

It is inherent to this approach that any K-sinusoidal estimate
that fits our samples within the MSE budget is a valid solution
to our problem.

MSEl ≤ σ2
l , l = 0, . . . , L− 1 (10)

where MSEl is the MSE between the reconstructed signals and
measurements of the l-th sensor. Clearly, we do not have the
ambition to minimize the MSE defined in (6); our more modest
goal is to find a valid solution, that fits our multi-sensor data up
to an uncertainty characterized by σ2

l .
Therefore, we consider the joint FRI recovery to be successful

as soon as the fitting error MSEl is less than the corresponding
MSE budget σ2

l for all the sensor measurements, which leads to
the vector MSE criterion. Our observation in practice is that any
solution that satisfies the MSE budget is sufficiently accurate—
controlled accuracy on the parameters (reaching Cram é r-Rao
lower bounds, see Fig. 3), which can be reliably achieved by
a few iterations and initializations. We demonstrate that this
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vector MSE criterion guarantees the robustness and accuracy
of the joint frequency retrieval, which we validate in various
simulations and experiments (see Section IV and Section V).

D. Multi-Dimensional FRI Approximation

Multi-dimensional sinusoidal signals, such as hydrophone
measurements from 2D planar array, optical interferometric
image, and interference fringes in underwater acoustics, are
ubiquitous.

Multi-dimensional FRI recovery can be seen as a Vector-FRI
approximation problem by flattening the multi-dimensional sig-
nal. More specifically, vectorizing the signal along a specific
dimension essentially leads to a collection of 1D signals with the
same frequencies. By applying the Vector-FRI approximation
for each dimension, the individual coordinates of the multi-
dimensional frequencies can be accurately retrieved, albeit
separately.

It is then necessary to pair these coordinates. An intuitive
idea is to utilize an amplitude criterion: the modulus should
be invariant across different dimensions. However, due to the
approximation error, the amplitude estimation is not sufficiently
robust in the presence of noise corruption, and hence, cannot be
used alone for pairing purposes.

Another idea is to fit all possible sinusoids (i.e., KD, if
D is the dimension of the measurements) to the data. Then,
Hanjie Pan’s observation in [7] is that, in practice, the K si-
nusoids that have the largest amplitude are the correctly paired
sinusoids.

III. ALGORITHMIC SETTING

We have sketched in Section II-B the algorithm that performs
joint FRI reconstruction of multi-sensor data. We now detail our
preferred implementation of these ideas.

A. Vector-FRI Algorithm Implementation

Denoting by VN,N ′ the N ×N ′ inverse DFT matrix

VN,N ′ =
1

N

[
e2jπnn

′/N ]
0≤n≤N−1
0≤n′≤N ′−1

,

the raw data of each sensor, normalized by their noise margin
σl, are transformed into their inverse DFT:

xl = VN,N

⎡
⎢⎢⎢⎢⎣

y0,l/σl

y1,l/σl

...

yN−1,l/σl

⎤
⎥⎥⎥⎥⎦ (11)

The motivation behind the normalization is to reduce the number
of iterations needed to satisfy the MSE criterion (10). Without it,
if one σl were significantly larger than the others, there would be
some chance that the criterion (6) be more efficiently decreased
by just decreasing the contribution of the l-th sensor, instead of
a more balanced contribution of all the sensors.

The polynomials involved in (3) can be expressed alge-
braically as[

PK−1,l(e
2jπn/N )

]
n=0,1,...,N−1

= VN,Kpl[
QK(e2jπn/N )

]
n=0,1,...,N−1

= VN,K+1q

where pl and q are the coefficients of PK−1,l and QK ,
stacked in vector form. We further stack all the vectors pl,
l = 0, 1, . . . , L− 1 into a unique LK × 1-vector p.

We assume that we have calculated an estimate qi−1 of q
at iteration i− 1. Let us denote by Ri−1 the inverse N ×N
diagonal matrix made of the vector VN,K+1q

i−1 along its
diagonal. Then, at iteration i, the minimization problem (6) can
be reformulated as

{pi,qi} = argmin
p,q

∥∥Ai−1q−Bi−1p
∥∥2 (12)

where the matrices Ai−1,Bi−1 are given by (⊗ = Kronecker
product)

Ai−1 =

⎡
⎢⎢⎢⎢⎣

diag(x0)

diag(x1)
...

diag(xL−1)

⎤
⎥⎥⎥⎥⎦Ri−1VN,K+1,

Bi−1 = IdL×L ⊗ (
Ri−1VN,K

)
Notice that Bi−1 is full rank, which comes from the fact

that both Ri−1 and VN,K are full rank. In order to attain an
unique solution qi to (12), a linear constraint (q0)Hqi = 1 is
imposed,1 where q0 is the initialization of the algorithm. With
this constraint, the minimization in (12) results in the update[

qi

−pi

]
= λ

([
Ai−1,Bi−1

]H[
Ai−1,Bi−1

])−1
[
q0

0

]
(13)

where λ is such that (q0)Hqi = 1 is satisfied.
For each random initialization q0, we keep iterating the poly-

nomial coefficients qi until the MSE criterion (10) is satisfied.
It is possible that the stopping criterion may not be met for
certain choices of q0 after reaching the maximum iteration
count = imax. In such cases, the algorithm is restarted with a
different initialization. Typically, in all our (extensive) tests, 5
random initializations and imax = 15 have been sufficient to
obtain a solution that fits our sensor data within the expected
noise margins. In practice, a deterministic initialization can be
obtained by evaluating the FFT spectrum of a single sensor
data for which the MSE budget is the smallest—picking the
K most prominent peaks (“islocalmax” function in Mat-
lab), which works in the vast majority of the cases in our
observation (> 90%). The main procedure is summarized in
Algorithm 1.

1This ensures experimentally (see [50]) that, after a finite number of trials
(iterations and random initializations), one of the iterates is within the MSE
budget. Other normalization strategies have been found to be less successful in
this aspect, such as a quadratic constraint ‖q‖ = 1; or a linear constraint on one
component of q, e.g., eH

0q = 1, where e0 = [1, 0, . . ., 0]T.
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Algorithm 1: Vector-FRI Algorithm.

Input: Multi-sensor measurements {yn,l}l=0···L−1
n=0···N−1,

noise margin {σl}l=0···L−1

1: IDFT of the normalized original data using (11)
2: for loop = 1 to max. initializations do
3: Initialize q with a random vector q0;
4: for i = 1 to max. iterations do
5: Build the matrices involved in (13) with qi−1, such

as Ai−1, Bi−1, and etc;
6: Update qi and pi by solving (13);

7: if
∑N−1

n=0

∣∣∣xn,l − PK−1,l(z)
QK(z)

∣∣∣2 ≤ N , for all l then
8: Terminate all loops;
9: end if

10: end for
11: end for
12: q = qi, p = pi;

Calculate {uk}k=1···K and {ck,l}l=0···L−1
k=1···K using (7)

and (8).
Output: The frequencies {uk}k=1···K and coefficients
{ck,l}l=0···L−1

k=1···K .

B. Model Order

As mentioned in Sec II-C, the key idea is to consider that
any sum of K sinusoids that fits our sensor measurements
within the given noise margins is a valid solution to our prob-
lem. Consequently, following Occam’s razor principle [57], the
“best” model order we choose is the smallest value of K for
which this sum of sinusoids still satisfies the MSE budget crite-
rion (10) for all the sensors. The detailed implementation of this
model-order determination utilizes a dichotomous approach that
was presented in [50].

IV. SIMULATION RESULTS

A. Performance Analysis

We compare the proposed algorithm with several state-of-
the-art techniques: matrix pencil [58], MUSIC [33], L2-based
CS [39] and atomic-norm based CS [40]. We first perform
assessment of the proposed algorithm in terms of the Cram é
r-Rao lower bounds, as seen in Fig. 3.

The evaluation of the computational cost is presented in Fig. 4.
Furthermore, we test the proposed algorithm in terms of the
perturbation on the input noise level, as shown in Fig. 5. In the
presence of heavy noise (e.g. SNR < −10 dB), the proposed
algorithm can retrieve the frequencies with large amplitude but
may miss those smaller ones.

B. Joint Frequency Estimation From Multi-Sensor Data

In this subsection, we consider the joint frequency estimation
from multi-sensor data with different noise levels σ2

l . Note that
these sensors may not be of the same type (e.g. accelerometer,
pressure sensor, vector particle velocity sensor, etc.). In this
simulation, three sensor data are generated with SNR = 15 dB,

Fig. 4. Assessment of the computation time (averages over 10000 random
realizations, L = 3 sensors and K = 2 sinusoids). The low computational cost
of Vector-FRI allows efficient processing of large amounts of data in real-time
applications.

Fig. 5. Vector-FRI algorithm is robust to inaccuracy of the input MSE budget
(averages over 5000 random realizations, K = 5 sinusoids, N = 21 samples
and L = 3 sensors).

10 dB, and 5 dB (50 samples). Fig. 6 shows the results of
matrix pencil, MUSIC, L2-based CS, atomic-norm based CS
and Vector-FRI (K = 10 sinusoids with different amplitudes
across sensors, L = 3 sensors). For visualization purpose, we
only show the reconstruction of the frequencies.

As can be seen from Fig. 6, our Vector-FRI retrieves all fre-
quencies accurately. Moreover, it was able to retrieve correctly
the model order (K = 10 sinusoids here) from the knowledge of
the MSE of the 3 sensors. Other high-resolution techniques (ma-
trix pencil, MUSIC, atomic-norm based CS, L2-based CS, etc.)
require the extra knowledge of the input number of sinusoids
and struggle to resolve closely-located frequencies.

In practice, inputting more noisy sensor data to standard high-
resolution techniques does not always give rise to more accurate
frequency estimation. As a result, practitioners usually abandon
sensor data with large MSE budget. Contrary to dropping sensor
data, the proposed algorithm exploits the maximum of the multi-
sensor data. As can be seen in Table I (averages over 10000
random realizations), using more sensor data provides a more
accurate frequency estimation—using all three sensors leads to
the best result, even if the data of Sensor 3 is quite noisy.
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Fig. 6. Joint frequency estimation from 3-sensor data (K = 10 sinusoids and N = 50 samples) in two noise scenarios. The run-time of Vector-FRI, matrix
pencil, MUSIC, L2-based CS, and atomic-norm based CS is 0.0105 s, 0.0088 s, 0.0196 s, 19.5329 s, and 2.0071 s. Our algorithm automatically determines the
model order (see Section III-B), and achieves a very accurate frequency retrieval in all scenarios. Other techniques are less accurate when dealing with correlated
noise. Moreover, in all scenarios they struggle to resolve closely-located frequencies.

TABLE I
MORE SENSORS, HIGHER ACCURACY

C. DOA Estimation for 2D Planar Array

DOA estimation is a classic problem that is frequently en-
countered in underwater acoustic, radioastronomy, and speech
signal processing [6], [59], [9]. An uniform rectangular array
(URA) with 25× 21 sensors (as show in Fig. 7(a)) is used for
data simulation.

For the narrowband sources, the received signals in frequency
domain can be expressed as [60]

I(n1, n2) =
K∑

k=1

cke
−j( 2πΔd1

λ n1uk,1+
2πΔd2

λ n2uk,2) (14)

where ck is the coefficient of the k-th source. uk,1 =
sin θk cosφk and uk,2 = sin θk sinφk are spatial frequencies
related to physical azimuth φk and elevation angle θk, where
Δd1 = 0.5λ andΔd2 = 0.5λ are the element spacing along hor-
izontal and vertical direction, andλ is the wavelength. Therefore,
the essential problem for DOA estimation is to retrieve the spatial
frequency pairs (uk,1, uk,2) and the corresponding coefficients
ck.

The classical methods, e.g. CBF, MVDR, MUSIC, and CS,
are to assume that the sources are located on discrete grid (i.e.
griding). In this case, the accuracy of reconstructed signal is
limited by the grid step. Alternatively, we handle the DOA
estimation directly with high resolution using our Vector-FRI
algorithm.

We demonstrate the effectiveness of our Vector-FRI algorithm
in Fig.7(b). In this case, there are ten sources with SNR = 20 dB.
Standard techniques (like CBF, MUSIC, etc.) fail to resolve the

closer sources because of the low resolution, and has the draw-
backs of false targets due to high sidelobes. Atomic-norm based
CS is not robust enough to resolve all the DOAs. By contrast,
our Vector-FRI algorithm retrieves all the source locations with
high accuracy and strong robustness.

V. EXPERIMENTAL RESULTS

A. Joint Frequency Estimation From SWellEx-96 Experiment

The performance of our Vector-FRI algorithm is further
validated using real data collected for localization, tracking,
geoacoustic inversion, measurements of ambient noise, etc in the
complex shallow-water environment (see Fig. 8). The processed
data set is from the shallow water evaluation cell experiment
1996 (SWellEx-96) Event S5, occurred from 23 : 15 to 0 : 30 in
the west of Point Loma, CA.

During the experiment, the data is collected by a vertical linear
array with 21 sensors. The array is located at a depth of 94.125 m
to 212.25 m. The data we are interested in is collected at about
23 : 52when the deep source was towed at a depth of about 54 m,
transmitting numerous tonals of various source levels between
49 Hz and 400 Hz, and the shallow source was towed at a depth
of about 9 m. The hydrophone measures the sensor data with a
frequency band from 180 Hz to 400 Hz, which results in very
intricate measurement noise that is intrinsically non-stationary,
colored, and correlated. The experimental parameters are set as
follows:

1) The vertical linear array consists of L = 21 sensors;
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Fig. 7. DOA estimation for 2D planar array. (a) Uniform rectangular array with
25× 21 sensors. (b) CBF (background color), Atomic-CS (◦) and Vector-FRI
DOA estimation (×) for 10 sources with SNR = 20 dB. Note that “•” denotes
the ground truth.

2) The raw sensor data contains K = 10 frequencies
[198, 201, 232, 235, 280, 283, 335, 338, 385, 388] Hz;

3) The sampling time is 0.25 s with the sampling frequency
of 1500 Hz, i.e. N = 375 samples;

4) The MSE budget is obtained from pre-measurements
when there is no source in the observation area (see
Table III in Supplementary Materials).

Since the actual marine environment is complex and time-
varying due to the influence of waves [61], tides [62] and cur-
rents [63] (these also lead to acoustic disturbances and colored
noise), it is difficult and expensive to collect acoustic signals,
e.g. expensive equipment (several hundred thousand dollars)
and charter fee (tens of thousands of dollars a day), and dif-
ficult deployment and recycling (bad weather, turbulent water,
and difficult underwater operations). Therefore, it is of great
significance to accurately estimate the frequency in a short time.
To further test the performance of our algorithm, a short-time
set of samples with a duration of 0.25 s (sampling frequency
1500 Hz) are selected. Notably, the associated amplitudes are

unknown due to the frequency selectivity in the ocean, so they
are displayed as lines.

As shown in Fig. 8(b) and (c), our Vector-FRI can resolve
all frequencies successfully and provide an exact K-sparsity
recovery. Standard sub-space based high-resolution techniques
like MUSIC cannot provide sufficient resolution and robustness,
leading to failures to resolve closely located frequencies. CS
fails to retrieve the frequencies with poor sparsity and limited
resolution. The essential reason is that, in real data collection,
the actual measurement noise is very sophisticated (non-white,
correlated, and non-stationary), which is caused by measuring
environmental changes and instrument precision [25], [26], [42],
[43].

In this section, our Vector-FRI algorithm achieves accu-
rate recovery using fewer samples in the presence of intricate
measurement noise (N = 375 samples). And that is important
in practical applications, such as real-time communications and
tracking, where common techniques in practice usually require
a long sampling time (typically, equivalent to 4500 samples)
and high computational cost. It allows us to acquire the real
data with a much lower cost on sampling and transmission,
and improve the resolution on frequency estimation, which
significantly broadens the scope of application.

B. Interference Fringes Reconstruction in Underwater
Acoustics

The underwater acoustic intensity of a broadband signal
usually exhibits a regular stripe pattern (see Fig. 10(a)) in
the frequency-range domain, whose parallel slope geometry
implicitly contains the information of the environment and the
sound source [64]. The pattern can be utilized to promote many
practical applications, e.g. ranging from sound source localiza-
tion [65], array data processing [66], time-reversal focusing [67],
and geoacoustic inversion [68], [69]. However, The actual data
contains a lot of disturbances because of the complicated sea
environment e.g. internal soliton waves (ISWs) propagate be-
tween sound source and receivers (see Fig. 9). And this greatly
limits the measurement and application of slope geometry, so
it is necessary to develop a robust method to retrieve the slope
geometry (direction) of stripe pattern [70].

In fact, the acoustic signal propagates in specific modes (nor-
mal modes) due to the waveguide environment [71]. Therefore,
an acoustic stripe pattern can be considered as the combination
of normal mode pairs with the similar direction. The regular
pattern an obvious direction can be regarded as

I(r) = g(uTr), where ‖u‖ = 1 (15)

where r is the coordinate vector of the pattern. g is the generator
function of the interference pattern, and g is empirically not
sparse whose Fourier spectrum has several finite support band
centered at certain frequencies. g depends on many factors, e.g.
sound speed profile and water depth. In this section, we are
more interested in u = [cosα, sinα]T, who characterizes the
(slope) of the interference pattern, and it is closely related to
the location of the sound source [65]. α is the angle between
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Fig. 8. Comprehensive shallow-water environment experiments: the goal is to retrieve multiple closely located source frequencies (with unknown amplitudes)
at [198, 201, 232, 235, 280, 283, 335, 338, 385, 388] Hz. (a) Hydrophones. (b) The frequency estimation results of Vector-FRI, MUSIC, and CS from 21-sensor
data. The run-time of Vector-FRI, MUSIC and CS is 0.3290 s, 0.2205 s and 17831 s. Our algorithm is 54200 times faster than compressive sensing (CS). (c)
The zoomed figure of (b). Our algorithm achieves a high-quality recovery that accurately retrieves all frequencies, whereas standard high-resolution techniques
(MUSIC, compressive sensing) cannot process these data due to sophisticated noise (correlated, colored, non-stationary).

Fig. 9. Illustration of acoustic intensity interferogram measurements. The
acoustic intensity interferogram appears as regular stripes in the ideal envi-
ronment (the range-independent sound speed profile). But the regular stripes are
damaged in the disturbed environment (the range-dependent sound speed profile
caused by ISWs). Our goal is to recover the directionality of the regular pattern
from the distorted pattern.

the pattern direction and the horizontal direction. However, the
regular directionality can be buried by interference due to ISWs
(occurs frequently in the ocean) [61]. And traditional methods,
e.g. 2D DFT and 2D MUSIC, cannot solve this problem [71]
and fail to resolve the ground truth from the interference with
insufficient resolution.

Fig. 9 shows th illustration of acoustic intensity interferogram
measurements. Our goal is to recover the directionality of the
regular pattern from the distorted pattern. The experimental
settings are as follows. A point source with the frequency band
of [650 : 2 : 750] Hz is located at a depth of 35 m. The horizontal
line array is also at a depth of 35 m, ranging from 51 km to 53 km
with a spacing of 50 m. And the depth of water is 38 m. The
experimental parameters are set as follows:

1) The size of fringes pattern is 51× 41 with α = 117.88◦;

2) The regular pattern contains K = 3 pairs of 2D sinusoids
(see Fig. 10);

3) The MSE budget is set to 0, which means running the al-
gorithm for a fixed number of iterations and initializations
and choosing the reconstruction that yields the minimum
MSE.

Fig. 10(a) indicates the received acoustic intensity without
ISWs in the range-frequency domain. There are clear and regular
interference fringes whose direction contains useful information
(α = 117.88◦). The 2D DFT of the regular pattern in Fig. 10(b)
reveals three principal frequency pair components (regarded as
ground truth), which actually corresponds to mode pairs (1,2),
(2,3), and (1,3), respectively and they determine the direction
of the pattern. In fact, although this pattern is not absolutely
sparse, the sparse approximation is sufficient for direction.
Fig. 10(c) shows the results of sparse approximation without
ISWs (α = 117.94◦). The parallel slope geometry of acoustic
intensity is completely preserved compared with Fig. 10(a),
which also shows the effectiveness of sparse approximation.

When ISWs occur, the regular pattern is damaged due to
the propagation of ISWs [70], [71] (see Fig. 10(d)). Subse-
quently, the distorted pattern contains many additional frequency
(direction) components caused by the coupling of different
modes (see Fig. 10(e)). In this case, the effective direction
information is buried by lots of interference and is difficult
to obtain.

Fortunately, the original frequency (direction) components
(corresponding to uncoupled mode pairs) in Fig. 10(b) are
always invariant across the period of ISWs according to the
mode-coupling theory, but the additional frequency components
(coupled-mode pairs) varies with the location of ISWs [71].
Therefore, the original invariant frequencies can be distin-
guished from the dirty frequency components as shown in
Fig. 10(e). The reconstructed pattern using the three origi-
nal frequency components (uncoupled modes) are indicated in
Fig. 10(f). It still retains the regular structure (valid information,
α = 117.19◦) in the the original pattern in Fig. 10(a). That is to
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Fig. 10. Interference fringes reconstruction of underwater acoustic intensity. (a) Interference fringes of acoustic intensity without disturbance (α = 117.88◦).
(b) The 2D frequency spectrum of (a). Background color represents the 2D DFT, • denotes the ground truth (uncoupled-mode pairs), × denotes the results of
Vector-FRI. (c) The 2D sparse approximation of interference fringes using Vector-FRI without disturbance (α = 117.94◦). (d) The distorted interference fringe
pattern is caused by disturbance. (e) The 2D frequency spectrum of the distorted pattern is calculated by 2D DFT (background color) and Vector-FRI with
disturbance. (f) The reconstructed pattern (α = 117.19◦) using Vector-FRI.

say, our Vector-FRI algorithm provides an accurate estimation
for the direction of acoustic fringes in underwater.

VI. CONCLUSION

Motivated by the requirements of multi-sensor applications,
we propose a Vector-FRI (finite rate of innovation) framework
for the joint sparse recovery of multi-sensor measurements,
which can be viewed as a collection of 1D sinusoidal samples
with the same frequencies, but different amplitudes. We demon-
strate that robust recovery can be achieved by fitting the multi-
sensor data to the joint parametric model, even if the instrument
precision is non-uniform and noise is correlated. Instead of
minimizing the model-fitting error, our key idea is to consider
any K-sinusoidal approximation that fits the multi-sensor data
within a given noise margin (MSE budget) is a valid solution to
our problem: our fitted parametric representation is as close (or
closer) to the noisy data as the underlying ground-truth is.

Moreover, we point out that the noise margin and the order
of the parametric model are interdependent: given a pre-defined
noise margin, the order of the model is the smallest number of
innovations/sinusoids for which this sum is still a valid solution;
on the other hand, if we fix the model order, the smallest MSE
attained by our algorithm (15 iterations for 5 random initializa-
tion) provides an estimate of the noise margin that characterizes
the inaccuracy of each sensor data.

In practice, we demonstrate that our method can be easily ex-
tended to multi-dimensional sensor measurements and provides
a generic strategy for many practical applications, e.g. direction-
of-arrival data of 2D planar array, optical interferometric image,
and interference fringes of underwater acoustics. We develop
a very efficient and robust algorithm and validate it through
various simulations and multiple types of real data.
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